scholarly journals Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training

2016 ◽  
Vol 113 (42) ◽  
pp. E6516-E6525 ◽  
Author(s):  
Paola C. Bello-Medina ◽  
Gonzalo Flores ◽  
Gina L. Quirarte ◽  
James L. McGaugh ◽  
Roberto A. Prado Alcalá

A growing body of evidence indicates that treatments that typically impair memory consolidation become ineffective when animals are given intense training. This effect has been obtained by treatments interfering with the neural activity of several brain structures, including the dorsal striatum. The mechanisms that mediate this phenomenon are unknown. One possibility is that intense training promotes the transfer of information derived from the enhanced training to a wider neuronal network. We now report that inhibitory avoidance (IA) induces mushroom spinogenesis in the medium spiny neurons (MSNs) of the dorsal striatum in rats, which is dependent upon the intensity of the foot-shock used for training; that is, the effect is seen only when high-intensity foot-shock is used in training. We also found that the relative density of thin spines was reduced. These changes were evident at 6 h after training and persisted for at least 24 h afterward. Importantly, foot-shock alone did not increase spinogenesis. Spine density in MSNs in the accumbens was also increased, but the increase did not correlate with the associative process involved in IA; rather, it resulted from the administration of the aversive stimulation alone. These findings suggest that mushroom spines of MSNs of the dorsal striatum receive afferent information that is involved in the integrative activity necessary for memory consolidation, and that intense training facilitates transfer of information from the dorsal striatum to other brain regions through augmented spinogenesis.

2019 ◽  
Vol 10 ◽  
Author(s):  
Manuela Ingallinesi ◽  
Benjamin Galet ◽  
Jonathan Pegon ◽  
Nicole Faucon Biguet ◽  
Anh Do Thi ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Javier Alegre-Cortés ◽  
María Sáez ◽  
Roberto Montanari ◽  
Ramon Reig

Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.


2021 ◽  
Author(s):  
Uri Nimrod Ramirez Jarquin ◽  
Manish Sharma ◽  
Neelam Shahani ◽  
Yunqing Li ◽  
Siddaraju Boregowda ◽  
...  

Rhes (RASD2) is a thyroid hormone-induced gene that regulates striatal motor activity and promotes neurodegeneration in Huntington disease (HD) and tauopathy. Previously, we showed that Rhes moves between cultured striatal neurons and transports the HD protein, polyglutamine-expanded huntingtin (mHTT) via tunneling nanotube (TNT)-like membranous protrusions. However, similar intercellular Rhes transport has not yet been demonstrated in the intact brain. Here, we report that Rhes induces TNT-like protrusions in the striatal medium spiny neurons (MSNs) and transported between dopamine-1 receptor (D1R)-MSNs and D2R-MSNs of intact striatum and organotypic brain slices. Notably, mHTT is robustly transported within the striatum and from the striatum to the cortical areas in the brain, and Rhes deletion diminishes such transport. Moreover, we also found transport of Rhes to the cortical regions following restricted expression in the MSNs of the striatum. Thus, Rhes is a first striatum-enriched protein demonstrated to move and transport mHTT between neurons and brain regions, providing new insights on interneuronal protein transport in the brain.


2019 ◽  
Author(s):  
Jonathan J. Cannon ◽  
Aniruddh D. Patel

AbstractBeat perception is central to music cognition. The motor system is involved in beat perception, even in the absence of movement, yet current frameworks for modeling beat perception do not strongly engage with the motor system’s neurocomputational properties. We believe fundamental progress on modeling beat perception requires a synthesis between cognitive science and motor neuroscience, yielding predictions to guide research. Success on this front would be a landmark in the study of how “embodied cognition” is implemented in brain activity. We illustrate this approach by proposing specific roles for two key motor brain structures (the supplementary motor area, and the dorsal striatum of the basal ganglia) in covert beat maintenance, building on current research on their role in actual movement.Highlights⍰Components of the brain’s motor system are activated by the perception of a musical beat, even in the absence of movement, and may play an important role in beat-based temporal prediction.⍰Two key brain regions involved in movement, the supplementary motor area and dorsal striatum, have neurocomputational properties that lend themselves to beat perception.⍰In supplementary motor area, neural firing rates represent the phase of cyclic sensorimotor processes.⍰Supplementary motor area’s involvement in perceptual suppression of self-generated sounds suggests that it could play a broader role in informing auditory expectations.⍰Dorsal striatum plays a central role in initiating and sequencing units of movement, and may serve similar functions in structuring beat-based temporal anticipation.


Author(s):  
Oscar Sánchez-Resendis ◽  
Andrea C. Medina ◽  
Norma Serafín ◽  
Roberto A. Prado-Alcalá ◽  
Benno Roozendaal ◽  
...  

2021 ◽  
Author(s):  
R. Austin. Bruce ◽  
Matthew A. Weber ◽  
Rachael A. Volkman ◽  
Mayu Oya ◽  
Eric B. Emmons ◽  
...  

AbstractTemporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson’s disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium-spiny neurons (MSNs) in the dorsal striatum of mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to “switch” response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with more experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that some MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.


Sign in / Sign up

Export Citation Format

Share Document