scholarly journals How beat perception coopts motor neurophysiology

2019 ◽  
Author(s):  
Jonathan J. Cannon ◽  
Aniruddh D. Patel

AbstractBeat perception is central to music cognition. The motor system is involved in beat perception, even in the absence of movement, yet current frameworks for modeling beat perception do not strongly engage with the motor system’s neurocomputational properties. We believe fundamental progress on modeling beat perception requires a synthesis between cognitive science and motor neuroscience, yielding predictions to guide research. Success on this front would be a landmark in the study of how “embodied cognition” is implemented in brain activity. We illustrate this approach by proposing specific roles for two key motor brain structures (the supplementary motor area, and the dorsal striatum of the basal ganglia) in covert beat maintenance, building on current research on their role in actual movement.Highlights⍰Components of the brain’s motor system are activated by the perception of a musical beat, even in the absence of movement, and may play an important role in beat-based temporal prediction.⍰Two key brain regions involved in movement, the supplementary motor area and dorsal striatum, have neurocomputational properties that lend themselves to beat perception.⍰In supplementary motor area, neural firing rates represent the phase of cyclic sensorimotor processes.⍰Supplementary motor area’s involvement in perceptual suppression of self-generated sounds suggests that it could play a broader role in informing auditory expectations.⍰Dorsal striatum plays a central role in initiating and sequencing units of movement, and may serve similar functions in structuring beat-based temporal anticipation.

2021 ◽  
Vol 11 (5) ◽  
pp. 599
Author(s):  
Adrian Andrzej Chrobak ◽  
Bartosz Bohaterewicz ◽  
Anna Maria Sobczak ◽  
Magdalena Marszał-Wiśniewska ◽  
Anna Tereszko ◽  
...  

The goal of this paper is to investigate the baseline brain activity in euthymic bipolar disorder (BD) patients by comparing it to healthy controls (HC) with the use of a variety of resting state functional magnetic resonance imaging (rs-fMRI) analyses, such as amplitude of low frequency fluctuations (ALFF), fractional ALFF (f/ALFF), ALFF-based functional connectivity (FC), and r egional homogeneity (ReHo). We hypothesize that above-mentioned techniques will differentiate BD from HC indicating dissimilarities between the groups within different brain structures. Forty-two participants divided into two groups of euthymic BD patients (n = 21) and HC (n = 21) underwent rs-fMRI evaluation. Typical band ALFF, slow-4, slow-5, f/ALFF, as well as ReHo indexes were analyzed. Regions with altered ALFF were chosen as ROI for seed-to-voxel analysis of FC. As opposed to HC, BD patients revealed: increased ALFF in left insula; increased slow-5 in left middle temporal pole; increased f/ALFF in left superior frontal gyrus, left superior temporal gyrus, left middle occipital gyrus, right putamen, and bilateral thalamus. There were no significant differences between BD and HC groups in slow-4 band. Compared to HC, the BD group presented higher ReHo values in the left superior medial frontal gyrus and lower ReHo values in the right supplementary motor area. FC analysis revealed significant hyper-connectivity within the BD group between left insula and bilateral middle frontal gyrus, right superior parietal gyrus, right supramarginal gyrus, left inferior parietal gyrus, left cerebellum, and left supplementary motor area. To our best knowledge, this is the first rs-fMRI study combining ReHo, ALFF, f/ALFF, and subdivided frequency bands (slow-4 and slow-5) in euthymic BD patients. ALFF, f/ALFF, slow-5, as well as REHO analysis revealed significant differences between two studied groups. Although results obtained with the above methods enable to identify group-specific brain structures, no overlap between the brain regions was detected. This indicates that combination of foregoing rs-fMRI methods may complement each other, revealing the bigger picture of the complex resting state abnormalities in BD.


2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 106-117 ◽  
Author(s):  
Catherine M. Arrington ◽  
Thomas H. Carr ◽  
Andrew R. Mayer ◽  
Stephen M. Rao

Objects play an important role in guiding spatial attention through a cluttered visual environment. We used event-related functional magnetic resonance imaging (ER-fMRI) to measure brain activity during cued discrimination tasks requiring subjects to orient attention either to a region bounded by an object (object-based spatial attention) or to an unbounded region of space (location-based spatial attention) in anticipation of an upcoming target. Comparison between the two tasks revealed greater activation when attention selected a region bounded by an object. This activation was strongly lateralized to the left hemisphere and formed a widely distributed network including (a) attentional structures in parietal and temporal cortex and thalamus, (b) ventral-stream object processing structures in occipital, inferior-temporal, and parahippocampal cortex, and (c) control structures in medial-and dorsolateral-prefrontal cortex. These results suggest that object-based spatial selection is achieved by imposing additional constraints over and above those processes already operating to achieve selection of an unbounded region. In addition, ER-fMRI methodology allowed a comparison of validly versus invalidly cued trials, thereby delineating brain structures involved in the reorientation of attention after its initial deployment proved incorrect. All areas of activation that differentiated between these two trial types resulted from greater activity during the invalid trials. This outcome suggests that all brain areas involved in attentional orienting and task performance in response to valid cues are also involved on invalid trials. During invalid trials, additional brain regions are recruited when a perceiver recovers from invalid cueing and reorients attention to a target appearing at an uncued location. Activated brain areas specific to attentional reorientation were strongly right-lateralized and included posterior temporal and inferior parietal regions previously implicated in visual attention processes, as well as prefrontal regions that likely subserve control processes, particularly related to inhibition of inappropriate responding.


2013 ◽  
Vol 109 (5) ◽  
pp. 1250-1258 ◽  
Author(s):  
Oliver Hinds ◽  
Todd W. Thompson ◽  
Satrajit Ghosh ◽  
Julie J. Yoo ◽  
Susan Whitfield-Gabrieli ◽  
...  

We used real-time functional magnetic resonance imaging (fMRI) to determine which regions of the human brain have a role in vigilance as measured by reaction time (RT) to variably timed stimuli. We first identified brain regions where activation before stimulus presentation predicted RT. Slower RT was preceded by greater activation in the default-mode network, including lateral parietal, precuneus, and medial prefrontal cortices; faster RT was preceded by greater activation in the supplementary motor area (SMA). We examined the roles of these brain regions in vigilance by triggering trials based on brain states defined by blood oxygenation level-dependent activation measured using real-time fMRI. When activation of relevant neural systems indicated either a good brain state (increased activation of SMA) or a bad brain state (increased activation of lateral parietal cortex and precuneus) for performance, a target was presented and RT was measured. RTs on trials triggered by a good brain state were significantly faster than RTs on trials triggered by a bad brain state. Thus human performance was controlled by monitoring brain states that indicated high or low vigilance. These findings identify neural systems that have a role in vigilance and provide direct evidence that the default-mode network has a role in human performance. The ability to control and enhance human behavior based on brain state may have broad implications.


Author(s):  
Hadeel Alyenbaawi ◽  
Richard Kanyo ◽  
Laszlo F. Locskai ◽  
Razieh Kamali-Jamil ◽  
Michèle G. DuVal ◽  
...  

SummaryTraumatic brain injury (TBI) is a prominent risk factor for neurodegenerative diseases and dementias including chronic traumatic encephalopathy (CTE). TBI and CTE, like all tauopathies, are characterized by accumulation of Tau into aggregates that progressively spread to other brain regions in a prion-like manner. The mechanisms that promote spreading and cellular uptake of tau seeds after TBI are not fully understood, in part due to lack of tractable animal models. Here, we test the putative roles for excess neuronal activity and dynamin-dependent endocytosis in promoting the in vivo spread of tauopathy. We introduce ‘tauopathy reporter’ zebrafish expressing a genetically-encoded fluorescent Tau biosensor that reliably reports accumulation of human tau species when seeded via intra-ventricular brain injections. Subjecting zebrafish larvae to a novel TBI paradigm produced various TBI symptoms including cell death, hemorrhage, blood flow abnormalities, post–traumatic seizures, and Tau inclusions. Bath application of anticonvulsant drugs rescued TBI-induced tauopathy and cell death; these benefits were attributable to inhibition of post-traumatic seizures because co-application of convulsants reversed these beneficial effects. However, one convulsant drug, 4-Aminopyridine, unexpectedly abrogated TBI-induced tauopathy - this was due to its inhibitory action on endocytosis as confirmed via additional dynamin inhibitors. These data suggest a role for seizure activity and dynamin-dependent endocytosis in the prion-like seeding and spreading of tauopathy following TBI. Further work is warranted regarding anti-convulsants that dampen post-traumatic seizures as a route to moderating subsequent tauopathy. Moreover, the data highlight the utility of deploying in vivo Tau biosensor and TBI methods in larval zebrafish, especially regarding drug screening and intervention.Graphical AbstractHighlightsIntroduces first Traumatic Brain Injury (TBI) model in larval zebrafish, and its easyTBI induces clinically relevant cell death, haemorrhage & post-traumatic seizuresCa2+ imaging during TBI reveals spike in brain activity concomitant with seizuresTau-GFP Biosensor allows repeated in vivo measures of prion-like tau aggregationpost-TBI, anticonvulsants stop tauopathies akin to Chronic Traumatic Encephalopathy


2021 ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Naiyi Wang ◽  
Liangyuan Ouyang ◽  
Xinlin Zhou

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebraic expressions (such as a − (b + c)). Previous studies shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although behavioral and neuropsychological studies have revealed the dissociation between algebra and arithmetic, how algebraic processing is dissociated from arithmetic in brain networks is still unclear. Methods Using functional magnetic resonance imaging (fMRI), this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. Conclusion These findings suggest that algebra relies on the semantic network and arithmetic relies on the phonological and visuospatial networks.


2020 ◽  
Author(s):  
Lauren D. Hill-Bowen ◽  
Michael C. Riedel ◽  
Ranjita Poudel ◽  
Taylor Salo ◽  
Jessica S. Flannery ◽  
...  

ABSTRACTBackgroundThe cue-reactivity paradigm is a widely adopted neuroimaging probe assessing brain activity linked to attention, memory, emotion, and reward processing associated with the presentation of appetitive stimuli. Lacking, is the apperception of more precise brain regions, neurocircuits, and mental operations comprising cue-reactivity’s multi-elemental nature. To resolve such complexities, we employed emergent meta-analytic techniques to enhance insight into drug and natural cue-reactivity in the brain.MethodsOperating from this perspective, we first conducted multiple coordinate-based meta-analyses to define common and distinct brain regions showing convergent activation across studies involving drug-related and natural-reward cue-reactivity paradigms. In addition, we examined the activation profiles of each convergent brain region linked to cue-reactivity as seeds in task-dependent and task-independent functional connectivity analyses. Using methods to cluster regions of interest, we categorized cue-reactivity into cliques, or sub-networks, based on the functional similarities between regions. Cliques were further classified with psychological constructs.ResultsWe identified a total of 164 peer-reviewed articles: 108 drug-related, and 56 natural-reward. When considering cue-reactivity collectively, across both drug and natural studies, activity convergence was observed in the dorsal striatum, limbic, insula, parietal, occipital, and temporal regions. Common convergent neural activity between drug and natural cue-reactivity was observed in the caudate, amygdala, thalamus, cingulate, and temporal regions. Drug distinct convergence was observed in the putamen, cingulate, and temporal regions, while natural distinct convergence was observed in the caudate, parietal, occipital, and frontal regions. We seeded identified cue-reactivity regions in meta-analytic connectivity modeling and resting-state functional connectivity analyses. Consensus hierarchical clustering of both connectivity analyses identified six distinct cliques that were further functionally characterized using the BrainMap and Neurosynth databases.ConclusionsWe examined the multifaceted nature of cue-reactivity and decomposed this construct into six elements of visual, executive function, sensorimotor, salience, emotion, and self-referential processing. Further, we demonstrated that these elements are supported by perceptual, sensorimotor, tripartite, and affective networks, which are essential to understanding the neural mechanisms involved in the development and or maintenance of addictive disorders.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sezgi Goksan ◽  
Caroline Hartley ◽  
Faith Emery ◽  
Naomi Cockrill ◽  
Ravi Poorun ◽  
...  

Limited understanding of infant pain has led to its lack of recognition in clinical practice. While the network of brain regions that encode the affective and sensory aspects of adult pain are well described, the brain structures involved in infant nociceptive processing are less well known, meaning little can be inferred about the nature of the infant pain experience. Using fMRI we identified the network of brain regions that are active following acute noxious stimulation in newborn infants, and compared the activity to that observed in adults. Significant infant brain activity was observed in 18 of the 20 active adult brain regions but not in the infant amygdala or orbitofrontal cortex. Brain regions that encode sensory and affective components of pain are active in infants, suggesting that the infant pain experience closely resembles that seen in adults. This highlights the importance of developing effective pain management strategies in this vulnerable population.


2018 ◽  
Author(s):  
Satoshi Hirose ◽  
Isao Nambu ◽  
Eiichi Naito

AbstractMotor action is prepared in the human brain for rapid initiation at the appropriate time. Recent non-invasive decoding techniques have shown that brain activity for action preparation represents various parameters of an upcoming action. In the present study, we demonstrated that a freely chosen effector can be predicted from brain activity measured using functional magnetic resonance imaging (fMRI) before initiation of the action. Furthermore, the activity was related to response time (RT). We measured brain activity with fMRI while 12 participants performed a finger-tapping task using either the left or right hand, which was freely chosen by them. Using fMRI decoding, we identified brain regions in which activity during the preparatory period could predict the hand used for the upcoming action. We subsequently evaluated the relationship between brain activity and the RT of the upcoming action to determine whether correct decoding was associated with short RT. We observed that activity in the supplementary motor area, dorsal premotor cortex, and primary motor cortex measured before action execution predicted the hand used to perform the action with significantly above-chance accuracy (approximately 70%). Furthermore, in most participants, the RT was shorter in trials for which the used hand was correctly predicted. The present study showed that preparatory activity in cortical motor areas represents information about the effector used for an upcoming action, and that well-formed motor representations in these regions are associated with reduced response times.HighlightsBrain activity measured by fMRI was used to predict freely chosen effectors.M1/PMd and SMA activity predicted the effector hand prior to action initiation.Response time was shorter in trials in which effector hand was correctly predicted.Freely chosen action is represented in the M1/PMd and SMA.Well-formed preparatory motor representations lead to reduced response time.


2020 ◽  
Vol 10 (12) ◽  
pp. 966
Author(s):  
Natsue Yoshimura ◽  
Hayato Tsuda ◽  
Domenico Aquino ◽  
Atsushi Takagi ◽  
Yousuke Ogata ◽  
...  

Age-related decline in sensorimotor integration involves both peripheral and central components related to proprioception and kinesthesia. To explore the role of cortical motor networks, we investigated the association between resting-state functional connectivity and a gap-detection angle measured during an arm-reaching task. Four region pairs, namely the left primary sensory area with the left primary motor area (S1left–M1left), the left supplementary motor area with M1left (SMAleft–M1left), the left pre-supplementary motor area with SMAleft (preSMAleft–SMAleft), and the right pre-supplementary motor area with the right premotor area (preSMAright–PMdright), showed significant age-by-gap detection ability interactions in connectivity in the form of opposite-sign correlations with gap detection ability between younger and older participants. Morphometry and tractography analyses did not reveal corresponding structural effects. These results suggest that the impact of aging on sensorimotor integration at the cortical level may be tracked by resting-state brain activity and is primarily functional, rather than structural. From the observation of opposite-sign correlations, we hypothesize that in aging, a “low-level” motor system may hyper-engage unsuccessfully, its dysfunction possibly being compensated by a “high-level” motor system, wherein stronger connectivity predicts higher gap-detection performance. This hypothesis should be tested in future neuroimaging and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document