scholarly journals Positive association between population genetic differentiation and speciation rates in New World birds

2017 ◽  
Vol 114 (24) ◽  
pp. 6328-6333 ◽  
Author(s):  
Michael G. Harvey ◽  
Glenn F. Seeholzer ◽  
Brian Tilston Smith ◽  
Daniel L. Rabosky ◽  
Andrés M. Cuervo ◽  
...  

An implicit assumption of speciation biology is that population differentiation is an important stage of evolutionary diversification, but its significance as a rate-limiting control on phylogenetic speciation dynamics remains largely untested. If population differentiation within a species is related to its speciation rate over evolutionary time, the causes of differentiation could also be driving dynamics of organismal diversity across time and space. Alternatively, geographic variants might be short-lived entities with rates of formation that are unlinked to speciation rates, in which case the causes of differentiation would have only ephemeral impacts. By pairing population genetics datasets from 173 New World bird species (>17,000 individuals) with phylogenetic estimates of speciation rate, we show that the population differentiation rates within species are positively correlated with their speciation rates over long timescales. Although population differentiation rate explains relatively little of the variation in speciation rate among lineages, the positive relationship between differentiation rate and speciation rate is robust to species-delimitation schemes and to alternative measures of both rates. Population differentiation occurs at least three times faster than speciation, which suggests that most populations are ephemeral. Speciation and population differentiation rates are more tightly linked in tropical species than in temperate species, consistent with a history of more stable diversification dynamics through time in the Tropics. Overall, our results suggest that the processes responsible for population differentiation are tied to those that underlie broad-scale patterns of diversity.

2016 ◽  
Author(s):  
Michael G. Harvey ◽  
Glenn F. Seeholzer ◽  
Brian Tilston Smith ◽  
Daniel L. Rabosky ◽  
Andrés M. Cuervo ◽  
...  

AbstractAlthough an implicit assumption of speciation biology is that population differentiation is an important stage of evolutionary diversification, its true significance remains largely untested. If population differentiation within a species is related to its speciation rate over evolutionary time, the causes of differentiation could also be driving dynamics of organismal diversity across time and space. Alternatively, geographic variants might be short-lived entities with rates of formation that are unlinked to speciation rates, in which case the causes of differentiation would have only ephemeral impacts. Combining population genetics datasets including 17,746 individuals from 176 New World bird species with speciation rates estimated from phylogenetic data, we show that the population differentiation rates within species predict their speciation rates over long timescales. Although relatively little variance in speciation rate is explained by population differentiation rate, the relationship between the two is robust to diverse strategies of sampling and analyzing both population-level and species-level datasets. Population differentiation occurs at least three to five times faster than speciation, suggesting that most populations are ephemeral. Population differentiation and speciation rates are more tightly linked in tropical species than temperate species, consistent with a history of more stable diversification dynamics through time in the Tropics. Overall, our results suggest investigations into the processes responsible for population differentiation can reveal factors that contribute to broad-scale patterns of diversity.


2015 ◽  
Vol 282 (1809) ◽  
pp. 20142889 ◽  
Author(s):  
Daniel L. Rabosky ◽  
Pascal O. Title ◽  
Huateng Huang

The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades.


Ecosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Andrikou‐Charitidou ◽  
G. Boutsis ◽  
E. Karadimou ◽  
A. S. Kallimanis

2018 ◽  
Author(s):  
Ullasa Kodandaramaiah ◽  
Gopal Murali

The development of methods to estimate rates of speciation and extinction from time- calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal ecological factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rates, and three modelling methods – BiSSE, MEDUSA and BAMM – have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide some suggestions to users of these methods.


2016 ◽  
Vol 283 (1824) ◽  
pp. 20152458 ◽  
Author(s):  
Camila Gómez ◽  
Elkin A. Tenorio ◽  
Paola Montoya ◽  
Carlos Daniel Cadena

Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour.


The Auk ◽  
2021 ◽  
Vol 138 (1) ◽  
Author(s):  
Ronald L Mumme ◽  
Robert S Mulvihill ◽  
David Norman

Abstract Rapid high-intensity molt of flight feathers occurs in many bird species and can have several detrimental consequences, including reductions in flight capabilities, foraging performance, parental care, and plumage quality. Many migratory New World warblers (family Parulidae) are known to have intense remigial molt, and recent work has suggested that simultaneous replacement of the rectrices may be widespread in the family as well. However, the phylogenetic distribution of simultaneous rectrix molt, and high-intensity flight feather molt more generally, has not been systematically investigated in warblers. We addressed this issue by examining flight feather molt in 13 species, representing 7 different warbler genera, at Powdermill Avian Research Center in southwestern Pennsylvania, USA. All 13 species replaced their 12 rectrices simultaneously, with the onset of rectrix molt occurring in the early-middle stages of high-intensity primary molt. As expected, single-brooded early migrants molted earlier than double-brooded species whose nesting activities extend into late summer. However, our finding that late-molting species replaced their primaries more slowly and less intensively than early molting species was unexpected, as late-molting species are widely hypothesized to be under stronger migration-related time constraints. This surprising result appears to be at least partially explained by a positive association between the pace of molt and daylength; shorter late-summer days may mandate reduced daily food intake, lower molt intensity, and a slower pace of molt. In comparison to other passerines, flight feather molt in warblers of eastern North America is extraordinarily intense; at its peak, individuals are simultaneously replacing 50–67% of their 48 flight feathers (all 12 rectrices and 6–10 remiges on each wing) for 2–3 weeks or more. Because molt of this intensity is likely to present numerous challenges for flight, avoiding predators, foraging, and parental care, the period of flight feather molt for warblers constitutes a highly demanding phase of their annual cycle.


2017 ◽  
Vol 30 (12) ◽  
pp. 2132-2145 ◽  
Author(s):  
B. Delahaie ◽  
J. Cornuault ◽  
C. Masson ◽  
J. A. M. Bertrand ◽  
Y. X. C. Bourgeois ◽  
...  

2020 ◽  
Author(s):  
Benjamin G Freeman ◽  
Dolph Schluter ◽  
Joseph A Tobias

AbstractWhere is evolution fastest? The biotic interactions hypothesis proposes that greater species richness creates more ecological opportunity, driving faster evolution at low latitudes, whereas the “empty niches” hypothesis proposes that ecological opportunity is greater where diversity is low, spurring faster evolution at high latitudes. Here we tested these contrasting predictions by analyzing rates of bird beak evolution for a global dataset of 1141 sister pairs of birds. Beak size evolves at similar rates across latitudes, while beak shape evolves faster in the temperate zone, consistent with the empty niches hypothesis. We show in a meta-analysis that trait evolution and recent speciation rates are faster in the temperate zone, while rates of molecular evolution are slightly faster in the tropics. Our results suggest that drivers of evolutionary diversification are more potent at higher latitudes, thus calling into question multiple hypotheses invoking faster tropical evolution to explain the latitudinal diversity gradient.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
José Martín Pujolar ◽  
Mozes P. K. Blom ◽  
Andrew Hart Reeve ◽  
Jonathan D. Kennedy ◽  
Petter Zahl Marki ◽  
...  

AbstractTropical mountains harbor exceptional concentrations of Earth’s biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species’ altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


Author(s):  
Joseph Manthey ◽  
Yann Bourgeois ◽  
Yonas Meheretu ◽  
Stephane Boissinot

Taxon-specific characteristics and extrinsic climatic and geological forces may both shape population differentiation and speciation. In geographically and taxonomically focused investigations, differentiation may occur synchronously as species respond to the same external conditions. Conversely, when evolution is investigated in taxa with largely varying traits, population differentiation and speciation is complex and shaped by interactions of Earth’s template and species-specific traits. As such, it is important to characterize evolutionary histories broadly across the tree of life, especially in geographic regions that are exceptionally diverse and under pressures from human activities such as in biodiversity hotspots. Here, using whole-genome sequencing data, we characterize genomic variation in populations of six Ethiopian Highlands forest bird species separated by a lowland biogeographic barrier, the Great Rift Valley (GRV). In all six species, populations on either side of the GRV exhibited significant but varying levels of genetic differentiation. Species with lower dispersal ability generally had higher levels of population differentiation. Divergence dating indicated asynchronous population differentiation histories, with at least three distinct diversification periods. We found that demographic histories—estimated for each individual—varied by both species and population but were consistent between individuals of the same species and sampling region. We found that genomic diversity varied by half an order of magnitude across species, and that this variation could largely be explained by the harmonic mean of effective population size over the past 200,000 years. Overall, we found that even in highly dispersive species like birds, the GRV acts as a substantial biogeographic barrier.


Sign in / Sign up

Export Citation Format

Share Document