scholarly journals Oogenesis and reproductive investment of Atlantic herring are functions of not only present but long-ago environmental influences as well

2017 ◽  
Vol 114 (10) ◽  
pp. 2634-2639 ◽  
Author(s):  
Thassya C. dos Santos Schmidt ◽  
Aril Slotte ◽  
James Kennedy ◽  
Svein Sundby ◽  
Arne Johannessen ◽  
...  

Following general life history theory, immediate reproductive investment (egg mass × fecundity/body mass) in oviparous teleosts is a consequence of both present and past environmental influences. This clarification questions the frequent use of season-independent (general) fecundity formulas in marine fish recruitment studies based on body metrics only. Here we test the underlying assumption of no lag effect on gametogenesis in the planktivorous, determinate-fecundity Atlantic herring (Clupea harengus) displaying large plasticity in egg mass and fecundity, examining Norwegian summer–autumn spawning herring (NASH), North Sea autumn-spawning herring (NSAH), and Norwegian spring-spawning herring (NSSH). No prior reproductive information existed for NASH. Compared with the 1960s, recent reproductive investment had dropped markedly, especially for NSAH, likely reflecting long-term changes in zooplankton biography and productivity. As egg mass was characteristically small for autumn spawners, although large for spring spawners (cf. different larval feeding conditions), fecundity was the most dynamic factor within reproductive investment. For the data-rich NSSH, we showed evidence that transient, major declines in zooplankton abundance resulted in low fecundity over several subsequent seasons, even if Fulton’s condition factor (K) turned high. Temporal trends inKslope(Kon total length) were, however, informative. These results clarify that fecundity is defined by (i) dynamics of primary (standing stock) oocytes and (ii) down-regulation of secondary oocytes, both processes intimately linked to environmental conditions but operating at different timescales. Thus, general fecundity formulas typically understate interannual variability in actual fecundity. We therefore argue for the use of segmented fecundity formulas linked to dedicated monitoring programs.

Author(s):  
Thassya C. dos Santos Schmidt ◽  
Doug E. Hay ◽  
Svein Sundby ◽  
Jennifer A. Devine ◽  
Guðmundur J. Óskarsson ◽  
...  

AbstractLife-history traits of Pacific (Clupea pallasii) and Atlantic (Clupea harengus) herring, comprising both local and oceanic stocks subdivided into summer-autumn and spring spawners, were extensively reviewed. The main parameters investigated were body growth, condition, and reproductive investment. Body size of Pacific herring increased with increasing latitude. This pattern was inconsistent for Atlantic herring. Pacific and local Norwegian herring showed comparable body conditions, whereas oceanic Atlantic herring generally appeared stouter. Among Atlantic herring, summer and autumn spawners produced many small eggs compared to spring spawners, which had fewer but larger eggs—findings agreeing with statements given several decades ago. The 26 herring stocks we analysed, when combined across distant waters, showed clear evidence of a trade-off between fecundity and egg size. The size-specific individual variation, often ignored, was substantial. Additional information on biometrics clarified that oceanic stocks were generally larger and had longer life spans than local herring stocks, probably related to their longer feeding migrations. Body condition was only weakly, positively related to assumingly in situ annual temperatures (0–30 m depth). Contrarily, body growth (cm × y−1), taken as an integrator of ambient environmental conditions, closely reflected the extent of investment in reproduction. Overall, Pacific and local Norwegian herring tended to cluster based on morphometric and reproductive features, whereas oceanic Atlantic herring clustered separately. Our work underlines that herring stocks are uniquely adapted to their habitats in terms of trade-offs between fecundity and egg size whereas reproductive investment mimics the productivity of the water in question.


2019 ◽  
Vol 95 (2) ◽  
pp. 367-378
Author(s):  
Guðmundur J. Óskarsson ◽  
Christopher T. Taggart ◽  
Robert L. Stephenson

2019 ◽  
Vol 6 ◽  
Author(s):  
Dorothee Moll ◽  
Paul Kotterba ◽  
Klaus Peter Jochum ◽  
Lena von Nordheim ◽  
Patrick Polte

1985 ◽  
Vol 42 (5) ◽  
pp. 989-998 ◽  
Author(s):  
G. H. Winters ◽  
J. P. Wheeler

The relationship between commercial catch-rates and population density upon which many stock assessment models depend assumes that stock area (A) is constant and independent of population abundance. Starting from a theoretical demonstration that the catchability coefficient (q) is inversely proportional to A, we establish the empirical basis of this relationship through comparisons of q and A of various Northwest Atlantic herring (Clupea harengus harengus) stocks and, in more detail, for Fortune Bay herring. For these stocks the relationship was of the form q = cA−b. For Atlantic herring stocks, levels of b were in excess of 0.80. In Fortune Bay herring, reductions in abundance were accompanied by proportional reductions in A, which in turn was inversely correlated with changes in q. School size, measured as catch per set, also declined as population levels declined but the change was not proportional. Published findings indicate that pelagic stocks in particular, and fish stocks in general, exhibit a common response of reductions in A with interactive increases in the q during periods of rapid population decline. We conclude that the conventional assumption of a constant stock area is usually violated due to the systematic interaction between A and population abundance which is reflected in an inverse relationship between stock abundance and q. Calibration of sequential population models should therefore be restricted to research vessel data collected in a standard manner and covering the distributional area of the stock.


1978 ◽  
Vol 35 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Paul W. Reno ◽  
Marie Philippon-Fried ◽  
Bruce L. Nicholson ◽  
Stuart W. Sherburne

Erythrocytes of PEN-positive Atlantic herring (Clupea harengus harengus) were examined to determine their ultrastructure. Cytoplasmic inclusions were of two types when observed under the electron microscope. The first type (type I) appeared coarsely granular, electron dense, round, and up to 1.5 μm in diameter. Virions were closely associated with this type of inclusion. The second type of inclusion (type II) had approximately the same appearance as the surrounding cytoplasm, from which it was separated by a discrete membrane, and was variable in size. Virions were not intimately associated with type II inclusions. Virions occurred singly or in clusters within the cytoplasm or in association with type I inclusions and were hexagonal and 145 nm in diameter. Virions were composed of a rigid hexagonal capsid 8 nm wide, a lighter 16-nm region, and a core 100 nm in diameter. The virus of PEN is presumptively classified as an Iridovirus. Key words: ultrastructure, erythrocytes, virology


1990 ◽  
Vol 47 (3) ◽  
pp. 460-470 ◽  
Author(s):  
G. H. Winters ◽  
J. P. Wheeler

Length-specific selection curves for Atlantic herring (Clupea harengus) were calculated for a series of gillnets ranging in mesh size from 50.8 to 76.2 mm (stretched measure) using Holt's (1963) model (ICNAF Spec. Publ. 5: 106–115). These curves were than compared with direct estimates of length-specific selectivity obtained from a comparison of gillnet catch length frequencies with population length composition data as determined from acoustic surveys. Selection curves calculated indirectly using the Holt model were unimodal and congruent. The empirical selection curves however were multimodal and fishing power varied with mesh size. These differences in selectivities were due to the fact that herring were caught not only by wedging at the maximum girth but also at other body positions such as the gills and snout. Each of these modes of capture have different length-specific selectivity characteristics and, since the relative contributions of the different modes of capture varied both between nets and annually, the selection curve of herring for a particular mesh size is not unique. It can however be reasonably approximated when girth is used as the selection criterion. Direct empirical selectivities are therefore recommended when interpreting population parameters from herring gillnet catch data.


1987 ◽  
Vol 44 (7) ◽  
pp. 1379-1385 ◽  
Author(s):  
Sharon E. McGladdery

Prevalence of Eimeria sardinae oocysts was closely correlated with the maturity stage of the testes of Atlantic herring (Clupea harengus harengus). Prevalence was low in testes of immature fish, increased in ripe and spawning fish, and decreased in postspawning fish. No correlation was found between prevalence and age of spawning herring. The uniformly high prevalences in mature fish indicated the efficiency of transmission on the spawning grounds, where infective oocysts are released. Infection of first-spawning herring (approximately age 3) indicated that the oocysts may be dispersed to surrounding areas or immature fish may associate with spawning aggregations. Therefore, this parasite could not be used to distinguish first from repeat spawners. Prevalence oF E. sardinae peaked in May and September, and possibly in June and early July, thereby distinguishing two, and possibly three, spawning groups. A previous study indicated no correlation between maturity stage and infections by E. sardinae in northeastern Atlantic herring. The difference between the two sides of the Atlantic is attributed to greater mixing of immature and adult herring around spawning grounds and/or greater dispersal of infective oocysts from spawning grounds in the northeastern Atlantic, compared with those in the northwest.


Sign in / Sign up

Export Citation Format

Share Document