scholarly journals Discovery of a widespread metabolic pathway within and among phenolic xenobiotics

2017 ◽  
Vol 114 (23) ◽  
pp. 6062-6067 ◽  
Author(s):  
Pahriya Ashrap ◽  
Guomao Zheng ◽  
Yi Wan ◽  
Tong Li ◽  
Wenxin Hu ◽  
...  

Metabolism is an organism’s primary defense against xenobiotics, yet it also increases the production of toxic metabolites. It is generally recognized that phenolic xenobiotics, a group of ubiquitous endocrine disruptors, undergo rapid phase II metabolism to generate more water-soluble glucuronide and sulfate conjugates as a detoxification pathway. However, the toxicological effects of the compounds invariably point to the phase I metabolic cytochrome P450 enzymes. Here we show that phenolic xenobiotics undergo an unknown metabolic pathway to form more lipophilic and bioactive products. In a nontargeted screening of the metabolites of a widely used antibacterial ingredient: triclosan (TCS), we identified a metabolic pathway via in vitro incubation with weever, quail, and human microsomes and in vivo exposure in mice, which generated a group of products: TCS-O-TCS. The lipophilic metabolite of TCS was frequently detected in urine samples from the general population, and TCS-O-TCS activated the constitutive androstane receptor with the binding activity about 7.2 times higher than that of the parent compound. The metabolic pathway was mediated mainly by phase I enzymes localized on the microsomes and widely observed in chlorinated phenols, phenols, and hydroxylated aromatics. The pathway was also present in different phenolic xenobiotics and formed groups of unknown pollutants in organisms (e.g., TCS-O-bisphenol A and TCS-O-benzo(a)pyrene), thus providing a cross-talk reaction between different phenolic pollutants during metabolic processes in organisms.

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1110
Author(s):  
Kunal Jhunjhunwala ◽  
Charles W. Dobard ◽  
Sunita Sharma ◽  
Natalia Makarova ◽  
Angela Holder ◽  
...  

Receptive anal intercourse (RAI) contributes significantly to HIV acquisition underscoring the need to develop HIV prevention options for populations engaging in RAI practices. We explored the feasibility of formulating rectal suppositories with potent antiviral drugs for on-demand use. A fixed-dose combination of tenofovir (TFV) and elvitegravir (EVG) (40 mg each) was co-formulated in six different suppository bases (three fat- and three water-soluble). Fat-soluble witepsol H15 and water-soluble polyethylene glycol (PEG) based suppositories demonstrated favorable in vitro release and were advanced to assess in vivo pharmacokinetics following rectal administration in macaques. In vivo drug release profiles were similar for both suppository bases. Median concentrations of TFV and EVG detected in rectal fluids at 2 h were 1- and 2-logs higher than the in vitro IC50, respectively; TFV-diphosphate levels in rectal tissues met or exceeded those associated with high efficacy against rectal simian HIV (SHIV) exposure in macaques. Leveraging on these findings, a PEG-based suppository with a lower dose combination of tenofovir alafenamide (TAF) and EVG (8 mg each) was developed and found to achieve similar rectal drug exposures in macaques. This study establishes the utility of rectal suppositories as a promising on-demand strategy for HIV PrEP and supports their clinical development.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A401-A401
Author(s):  
Shubham Pant ◽  
Amishi Shah ◽  
Pavlos Msaouel ◽  
Matthew Campbell ◽  
Shi-Ming Tu ◽  
...  

BackgroundMRx0518 is a novel, human gut microbiome-derived, single-strain, oral live biotherapeutic. It is a bacterium of the Enterococcus genus that was selected for development in the treatment of solid tumours for its strong in vitro and in vivo immunostimulatory activity. In vivo studies have shown that MRx0518 can inhibit tumour growth in different syngeneic cancer models as monotherapy and in combination with checkpoint inhibitors. MRx0518 has been shown to reduce Treg and increase Th1 and Tc1 lymphocyte differentiation in vitro, and increase intratumoral CD4+ and CD8+ T cells and NK cells in vivo.This phase I/II clinical study is evaluating the combination of MRx0518 and pembrolizumab in a cohort of heavily pre-treated patients refractory to immune checkpoint inhibitors (ICIs) to assess whether it is safe and can provide a clinical benefit.MethodsThe study is being conducted in two parts. Part A is complete and evaluated safety of the combination therapy in a cohort of 12 mRCC and mNSCLC patients. This data was assessed by the Safety Review Committee and it was determined appropriate to proceed to Part B. Part B is now recruiting up to 30 additional patients per indication (RCC, NSCLC or bladder cancer) at several US sites. Patients in both parts must be refractory to checkpoint inhibition. This is defined as having had an initial benefit from PD-1 pathway targeting immune checkpoint inhibition (ICI) but developing disease progression confirmed by two radiological scans ≥4 weeks apart in the absence of rapid clinical progression and within 12 weeks of last dose of ICI. Patients are treated with 1 capsule of MRx0518 (1 × 1010 to 1 × 1011 CFU) twice daily and pembrolizumab (200 mg every 3 weeks) for up to 35 cycles or until disease progression. Tumour response is assessed every 9 weeks per RECIST. Blood, stool and urine samples are collected throughout the study to evaluate immune markers and microbiome. Patients may choose to consent to tissue biopsies. The primary objective of the study is to evaluate safety of the combination by monitoring toxicities in the first cycle of treatment. Secondary objectives are to evaluate efficacy via ORR, DOR, DCR (CR, PR or SD ≥6 months) and PFS. Exploratory objectives are to evaluate biomarkers of treatment effect, impact on microbiota and OS and correlation of clinical outcome with PD-L1 CPS/TPS.ResultsN/AConclusionsN/ATrial RegistrationNCT03637803Ethics ApprovalThis study was approved by University of Texas MD Anderson’s Institutional Review Board; approval ref. 2018-0290


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


1996 ◽  
Vol 40 (11) ◽  
pp. 2567-2572 ◽  
Author(s):  
J R Sufrin ◽  
D Rattendi ◽  
A J Spiess ◽  
S Lane ◽  
C J Marasco ◽  
...  

Fifteen purine nucleosides and their O-acetylated ester derivatives were examined for in vitro antitrypanosomal activity against the LAB 110 EATRO isolate of Trypanosoma brucei brucei and two clinical isolates of Trypanosoma brucei rhodesiense. Initial comparisons of activity were made for the LAB 110 EATRO isolate. Three nucleoside analogs exhibited no significant activity (50% inhibitory concentrations [IC50s] of > 100 microM), whether they were O acetylated or unacetylated; three nucleosides showed almost equal activity (IC50s of < 5 microM) for the parent compound and the O-acetylated derivative; nine nucleosides showed significantly improved activity (> or = 3-fold) upon O acetylation; of these nine analogs, six displayed activity at least 10-fold greater than that of their parent nucleosides. The most significant results were those for four apparently inactive compounds which, upon O acetylation, displayed IC50s of < or = 25 microM. When the series of compounds was tested against T. brucei rhodesiense isolates (KETRI 243 and KETRI 269), their antitrypanosomal effects were comparable to those observed for the EATRO 110 strain. Thus, our studies of purine nucleosides have determined that O acetylation consistently improved their in vitro antitrypanosomal activity. This observed phenomenon was independent of their cellular enzyme targets (i.e., S-adenosylmethionine, polyamine, or purine salvage pathways). On the basis of our results, the routine preparation of O-acetylated purine nucleosides for in vitro screening of antitrypanosomal activity is recommended, since O acetylation transformed several inactive nucleosides into compounds with significant activity, presumably by improving uptake characteristics. O-acetylated purine nucleosides may offer in vivo therapeutic advantages compared with their parent nucleosides, and this possibility should be considered in future evaluations of this structural class of trypanocides.


2008 ◽  
Vol 53 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Rahul P. Bakshi ◽  
Dongpei Sang ◽  
Andrew Morrell ◽  
Mark Cushman ◽  
Theresa A. Shapiro

ABSTRACT African trypanosomiasis (sleeping sickness), caused by protozoan Trypanosoma brucei species, is a debilitating disease that is lethal if untreated. Available drugs are antiquated, toxic, and compromised by emerging resistance. The indenoisoquinolines are a class of noncamptothecin topoisomerase IB poisons that are under development as anticancer agents. We tested a variety of indenoisoquinolines for their ability to kill T. brucei. Indenoisoquinolines proved trypanocidal at submicromolar concentrations in vitro. Structure-activity analysis yielded motifs that enhanced potency, including alkylamino substitutions on N-6, methoxy groups on C-2 and C-3, and a methylenedioxy bridge between C-8 and C-9. Detailed analysis of eight water-soluble indenoisoquinolines demonstrated that in trypanosomes the compounds inhibited DNA synthesis and acted as topoisomerase poisons. Testing these compounds on L1210 mouse leukemia cells revealed that all eight were more effective against trypanosomes than against mammalian cells. In preliminary in vivo experiments one compound delayed parasitemia and extended survival in mice subjected to a lethal trypanosome challenge. The indenoisoquinolines provide a promising lead for the development of drugs against sleeping sickness.


Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document