scholarly journals Intact piRNA pathway prevents L1 mobilization in male meiosis

2017 ◽  
Vol 114 (28) ◽  
pp. E5635-E5644 ◽  
Author(s):  
Simon J. Newkirk ◽  
Suman Lee ◽  
Fiorella C. Grandi ◽  
Valeriya Gaysinskaya ◽  
James M. Rosser ◽  
...  

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1−/− testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1−/− germ cells compared with the wild-type. Analysis of adult Mov10l1−/− germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1−/− phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.

Author(s):  
Arlette Rwigemera ◽  
Rhizlane El omri-Charai ◽  
Laetitia L Lecante ◽  
Geraldine Delbes

Abstract Epigenetic reprogramming during perinatal germ cell development is essential for genomic imprinting and cell differentiation; however, the actors of this key event and their dynamics are poorly understood in rats. Our study aimed to characterize the expression patterns of epigenetic modifiers and the changes in histone modifications in rat gonocytes at the time of de novo DNA methylation. Using transgenic rats expressing Green Fluorescent Protein (GFP) specifically in germ cells, we purified male gonocytes by fluorescent activated cell sorting at various stages of perinatal development and established the transcriptomic profile of 165 epigenetic regulators. Using immunofluorescence on gonad sections, we tracked six histone modifications in rat male and female perinatal germ cells over time, including methylation of histone H3 on lysines 27, 9, and 4; ubiquitination of histone H2A on lysine119; and acetylation of histone H2B on lysine 20. The results revealed the dynamics in the expression of ten-eleven translocation enzymes and DNA methyltransferases in male gonocytes at the time of de novo DNA methylation. Moreover, our transcriptomic data indicate a decrease in histone ubiquitination and methylation coinciding with the beginning of de novo DNA methylation. Decreases in H2AK119Ub and H3K27me3 were further confirmed by immunofluorescence in the male germ cells but were not consistent for all H3 methylation sites examined. Together, our data highlighted transient chromatin remodeling involving histone modifications during de novo DNA methylation. Further studies addressing how these dynamic changes in histone posttranslational modifications could guide de novo DNA methylation will help explain the complex establishment of the male germ cell epigenome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanako Kojima-Kita ◽  
Satomi Kuramochi-Miyagawa ◽  
Manabu Nakayama ◽  
Haruhiko Miyata ◽  
Steven E. Jacobsen ◽  
...  

AbstractThe PIWI (P-element-induced wimpy testis)-interacting-RNA (piRNA) pathway plays a crucial role in the repression of TE (transposable element) expression via de novo DNA methylation in mouse embryonic male germ cells. Various proteins, including MIWI2 are involved in the process. TE silencing is ensured by piRNA-guided MIWI2 that recruits some effector proteins of the DNA methylation machinery to TE regions. However, the molecular mechanism underlying the methylation is complex and has not been fully elucidated. Here, we identified MORC3 as a novel associating partner of MIWI2 and also a nuclear effector of retrotransposon silencing via piRNA-dependent de novo DNA methylation in embryonic testis. Moreover, we show that MORC3 is important for transcription of piRNA precursors and subsequently affects piRNA production. Thus, we provide the first mechanistic insights into the role of this effector protein in the first stage of piRNA biogenesis in embryonic TE silencing mechanism.


2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2004 ◽  
Vol 15 (3) ◽  
pp. 1031-1043 ◽  
Author(s):  
Ulrich Schlecht ◽  
Philippe Demougin ◽  
Reinhold Koch ◽  
Leandro Hermida ◽  
Christa Wiederkehr ◽  
...  

We report a comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis, and gametogenesis by using high-density oligonucleotide microarrays and highly enriched cell populations. Among 11,955 rat loci investigated, 1268 were identified as differentially transcribed in germ cells at subsequent developmental stages compared with total testis, somatic Sertoli cells as well as brain and skeletal muscle controls. The loci were organized into four expression clusters that correspond to somatic, mitotic, meiotic, and postmeiotic cell types. This work provides information about expression patterns of ∼200 genes known to be important during male germ cell development. Approximately 40 of those are included in a group of 121 transcripts for which we report germ cell expression and lack of transcription in three somatic control cell types. Moreover, we demonstrate the testicular expression and transcriptional induction in mitotic, meiotic, and/or postmeiotic germ cells of 293 as yet uncharacterized transcripts, some of which are likely to encode factors involved in spermatogenesis and fertility. This group also contains potential germ cell-specific targets for innovative contraceptives. A graphical display of the data is conveniently accessible through the GermOnline database at http://www.germonline.org .


2010 ◽  
Vol 203 (1) ◽  
pp. 64
Author(s):  
Leendert Looijenga ◽  
Hendrik Wermann ◽  
Hans Stoop ◽  
Ad Gillis ◽  
Friedemann Honecker ◽  
...  

2008 ◽  
Vol 31 (6) ◽  
pp. 785-799 ◽  
Author(s):  
Alexei A. Aravin ◽  
Ravi Sachidanandam ◽  
Deborah Bourc'his ◽  
Christopher Schaefer ◽  
Dubravka Pezic ◽  
...  

2003 ◽  
Vol 23 (16) ◽  
pp. 5594-5605 ◽  
Author(s):  
Taiping Chen ◽  
Yoshihide Ueda ◽  
Jonathan E. Dodge ◽  
Zhenjuan Wang ◽  
En Li

ABSTRACT We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S D Persio ◽  
E Leitão ◽  
M Wöste ◽  
T Tekath ◽  
J F Cremers ◽  
...  

Abstract Study question Do DNA methylation changes occur in testicular germ cells (TGCs) from patients with impaired spermatogenesis? Summary answer TGCs from men with cryptozoospermia exhibit altered DNA methylation levels at several genomic regions, many of which are associated with genes involved in spermatogenesis. What is known already In the last 15 years, several studies have described DNA methylation changes in sperm of infertile men. More recently, using whole genome bisulfite sequencing (WGBS) we were able to refute these findings by demonstrating that somatic DNA contamination and genetic variation confound methylation studies in swim-up purified sperm of severely oligozoospermic men. However, it remains unknown whether altered DNA methylation plays a role during the development of the germ cells in the testes of these patients. Study design, size, duration For identifying DNA methylation differences associated with impaired spermatogenesis, we compared the TGC methylomes of men with cryptozoospermia (CZ) and men with obstructive azoospermia (n = 4 each), who had normal spermatogenesis and served as controls (CTR). Study participants were selected among an age-matched cohort of 24 CTR and 10 CZ. The selection was based on similar composition of the TGC suspension evaluated by ploidy analysis and absence of somatic DNA. Participants/materials, setting, methods TGCs were isolated from biopsies after short-term cell culture. Presence of somatic DNA was evaluated by analyzing the DNA methylation levels of H19, MEST, DDX4 and XIST. WGBS was performed at ∼14× coverage. Bioinformatic tools were used to compare global DNA methylation levels, identify differentially methylated regions (DMRs) and functionally annotate the DMRs. Single-cell RNA sequencing (scRNA-seq) was used to associate the DNA methylation changes to gene expression. Main results and the role of chance We could not identify any difference in the global DNA methylation level or at imprinted regions between CZ and CTR samples. However, using stringent filters to identify group-specific methylation differences, we detected 271 DMRs, 238 of which were hypermethylated in CZ (binominal test, p < 2.2 × 10–16). The DMRs are associated with 132 genes, 61 of which are known to be differentially expressed at various stages of spermatogenesis according to scRNA-seq studies. Almost all of the DMRs associated with the 61 genes are hypermethylated in CZ (63/67, p = 1.107 × 10–14). As assessed by scRNA-seq, 13 DMR-associated genes, which were mainly expressed during meiosis and spermiogenesis, show a significantly different pattern of expression in CZ patients. In four of these genes, the promoter was hypermethylated in CZ men, which correlates with a lower expression level in these patients. In the other nine genes, most of which downregulated in CZ, germ cell-specific enhancers may be affected. Limitations, reasons for caution The small sample size constitutes a limitation of this study. Furthermore, even though the cellular composition of samples was similar by ploidy analysis, we cannot rule out that the observed DNA methylation changes might be due to differences in the relative proportion of different germ cell types. Wider implications of the findings: Impaired spermatogenesis is associated with DNA methylation changes in testicular germ cells at functionally relevant regions of the genome, which points to an important role of DNA methylation in normal spermatogenesis. The DNA methylation changes may contribute to premature abortion of spermatogenesis and therefore not appear in mature sperm. Trial registration number N/A


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Hendrik Wermann ◽  
Hans Stoop ◽  
Ad JM Gillis ◽  
Friedemann Honecker ◽  
Ruud JHLM van Gurp ◽  
...  

2012 ◽  
Vol 28 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Sébastien A. Smallwood ◽  
Gavin Kelsey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document