scholarly journals Prostaglandin dehydrogenase is a target for successful induction of cervical ripening

2017 ◽  
Vol 114 (31) ◽  
pp. E6427-E6436 ◽  
Author(s):  
Annavarapu Hari Kishore ◽  
Hanquan Liang ◽  
Mohammed Kanchwala ◽  
Chao Xing ◽  
Thota Ganesh ◽  
...  

The cervix represents a formidable structural barrier for successful induction of labor. Approximately 10% of pregnancies undergo induction of cervical ripening and labor with prostaglandin (PG) E2 or PGE analogs, often requiring many hours of hospitalization and monitoring. On the other hand, preterm cervical ripening in the second trimester predicts preterm birth. The regulatory mechanisms of this paradoxical function of the cervix are unknown. Here, we show that PGE2 uses cell-specific EP2 receptor-mediated increases in Ca2+ to dephosphorylate and translocate histone deacetylase 4 (HDAC4) to the nucleus for repression of 15-hydroxy prostaglandin dehydrogenase (15-PGDH). The crucial role of 15-PGDH in cervical ripening was confirmed in vivo. Although PGE2 or 15-PGDH inhibitor alone did not alter gestational length, treatment with 15-PGDH inhibitor + PGE2 or metabolism-resistant dimethyl-PGE2 resulted in preterm cervical ripening and delivery in mice. The ability of PGE2 to selectively autoamplify its own synthesis in stromal cells by signaling transcriptional repression of 15-PGDH elucidates long sought-after molecular mechanisms that govern PG action in the cervix. This report details unique mechanisms of action in the cervix and serves as a catalyst for (i) the use of 15-PGDH inhibitors to initiate or amplify low-dose PGE2-mediated cervical ripening or (ii) EP2 receptor antagonists, HDAC4 inhibitors, and 15-PGDH activators to prevent preterm cervical ripening and preterm birth.

Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 165 ◽  
Author(s):  
Andrew J. Hayes ◽  
Jiulia Satiaputra ◽  
Louise M. Sternicki ◽  
Ashleigh S. Paparella ◽  
Zikai Feng ◽  
...  

Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10−9) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in S. aureus.


2005 ◽  
Vol 202 (11) ◽  
pp. 1493-1505 ◽  
Author(s):  
Holger K. Eltzschig ◽  
Parween Abdulla ◽  
Edgar Hoffman ◽  
Kathryn E. Hamilton ◽  
Dionne Daniels ◽  
...  

Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)–dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1α mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia.


2015 ◽  
Vol 27 (1) ◽  
pp. 150 ◽  
Author(s):  
L. Peralta ◽  
E. Mourier ◽  
C. Richard ◽  
P. Chavette-Palmer ◽  
M. Muller ◽  
...  

Despite numerous advances and intensive research in perinatal medicine, spontaneous preterm birth (PTB) is the leading global cause of neonatal mortality and morbidity. On the other hand, labour has to be induced in ~23% of pregnancies worldwide. Both issues may be related to the distensibility of the cervical tissue. Quantitative and objective monitoring of the cervix ripening may provide a complementary method to identify cases at risk of PTB and assess the likelihood of successful induction of labour. Currently, however, no reliable clinical tools for such a quantitative and objective evaluation exist. Elastography aims at imaging tissue stiffness. All elastography techniques rely on the same basics: an external force is applied to the tissue and the resulting movements are then followed. Supersonic shear imaging (SSI) is a dynamic method that uses the propagation of mechanical waves to excite the tissue. Its speed is tracked then by ultrafast imaging, allowing characterisation of stiffness [Bercoff et al. 2004 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51, 396–409]. Understanding the mechanisms that take place in normal pregnancy will allow a better comprehension of the cervical remodelling and lead to better methods of diagnosis of PTB and successful induction of labour. In this work, we propose a preliminary assessment of the evolution of stiffness during the cervical maturation process in the sheep. The main goal was to study the feasibility of elastography using SSI to quantify cervical stiffness during the maturation process and to assess the potential of this technique for diagnosis of preterm labour and for labour induction success. Cervical stiffness was quantified, by 2 different operators, in 9 pregnant ewes in vivo by using SSI. The cervical ripening was induced by a dexamethasone injection in 5 animals, and 4 animals constituted the control group. The stiffness of the second ring of the cervix was quantified over a circular region of interest of 5 mm of diameter during vaginal ultrasound examination. Images were acquired every 4 h during 24 h to monitor the cervical maturation induced by the dexamethasone injection. Cervical stiffness was found to decrease significantly throughout the cervical ripening (from 9.5 ± 0.9 kPa to 5.0 ± 0.8 kPa; P = 2.7e–5). The intraobserver and interobserver repeatability of measurements were assessed using Bland-Altman analysis with 95% CI. The principal findings of the study were that elastography measurements using SSI technique were highly reproducible in all cases. Second, stiffness of the uterine cervix decreases throughout the maturation process induced by the dexamethasone injection. Finally, it was possible to quantify the decrease of stiffness through the cervical maturation process. Elastography may be a valuable method to quantify objectively and noninvasively the cervical stiffness in vivo, and ultimately could be a useful tool for the diagnosis of PTB and the assessment of labour induction success.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3710-3718 ◽  
Author(s):  
Akihiko Yokoyama ◽  
Issay Kitabayashi ◽  
Paul M. Ayton ◽  
Michael L. Cleary ◽  
Misao Ohki

MLL (mixed lineage leukemia; alsoALL-1 or HRX) is a proto-oncogene that is mutated in a variety of acute leukemias. Its product is normally required for the maintenance of Hox gene expression during embryogenesis and hematopoiesis through molecular mechanisms that remain poorly defined. Here we demonstrate that MLL (mixed lineage leukemia) is proteolytically processed into 2 fragments (MLLN and MLLC) that display opposite transcriptional properties and form an intramolecular MLL complex in vivo. Proteolytic cleavage occurs at 2 amino acids (D2666 and D2718) within a consensus processing sequence (QXD/GZDD, where X is a hydrophobic amino acid and Z is an alanine or a valine) that is conserved in TRX, the Drosophila homolog of MLL, and in the MLL-related protein MLL2, suggesting that processing is important for MLL function. Processed MLLN and MLLC associate with each other via N-terminal (1253-2254 amino acids) and C-terminal (3602-3742 amino acids) intramolecular interaction domains. MLL processing occurs rapidly within a few hours after translation and is followed by the phosphorylation of MLLC. MLLNdisplays transcriptional repression activity, whereas MLLChas strong transcriptional activation properties. Leukemia-associated MLL fusion proteins lack the MLL processing sites, do not undergo cleavage, and are unable to interact with MLLC. These observations suggest that posttranslational modifications of MLL may participate in regulating its activity as a transcription factor and that this aspect of its function is perturbed by leukemogenic fusions.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1036-1046 ◽  
Author(s):  
Roxane Holt ◽  
Brenda C. Timmons ◽  
Yucel Akgul ◽  
Meredith L. Akins ◽  
Mala Mahendroo

In the current study, the mechanisms of premature cervical ripening in murine models of preterm birth resulting from infection or early progesterone withdrawal were compared with the process of term cervical ripening. Tissue morphology, weight, gene expression, and collagen content along with immune cell populations were evaluated. Premature ripening induced by the progesterone receptor antagonist mifepristone results from an acceleration of processes in place during term ripening as well as partial activation of proinflammatory and immunosuppressive processes observed during postpartum repair. In contrast to term or mifepristone-induced preterm ripening, premature ripening induced in an infection model occurs by a distinct mechanism which is dominated by an influx of neutrophils into the cervix, a robust proinflammatory response and increased expression of prostaglandin-cyclooxygenase-endoperoxide synthase 2, important in prostaglandin biosynthesis. Key findings from this study confirm that cervical ripening can be initiated by more than one mechanism and is not necessarily an acceleration of the physiologic process at term. These results will influence current strategies for identifying specific etiologies of preterm birth and developing subsequent therapies.


2009 ◽  
Vol 29 (8) ◽  
pp. 2230-2242 ◽  
Author(s):  
Anna Ehrlund ◽  
Elin Holter Anthonisen ◽  
Nina Gustafsson ◽  
Nicolas Venteclef ◽  
Kirsten Robertson Remen ◽  
...  

ABSTRACT Genetic and experimental evidence points to a critical involvement of the atypical mammalian orphan receptor DAX-1 in reproductive development and steroidogenesis. Unlike conventional nuclear receptors, DAX-1 appears not to function as a DNA-bound transcription factor. Instead, it has acquired the capability to act as a transcriptional corepressor of steroidogenic factor 1 (SF-1). The interplay of DAX-1 and SF-1 is considered a central, presumably ligand-independent element of adrenogonadal development and function that requires tight regulation. This raises a substantial interest in identifying its modulators and the regulatory signals involved. Here, we uncover molecular mechanisms that link DAX-1 to the ubiquitin modification system via functional interaction with the E3 ubiquitin ligase RNF31. We demonstrate that RNF31 is coexpressed with DAX-1 in steroidogenic tissues and participates in repressing steroidogenic gene expression. We provide evidence for the in vivo existence of a corepressor complex containing RNF31 and DAX-1 at the promoters of the StAR and CYP19 genes. Our data suggest that RNF31 functions to stabilize DAX-1, which might be linked to DAX-1 monoubiquitination. In conclusion, RNF31 appears to be required for DAX-1 to repress transcription, provides means to regulate DAX-1 in ligand-independent ways, and emerges as a relevant coregulator of steroidogenic pathways governing physiology and disease.


2002 ◽  
Vol 16 (5) ◽  
pp. 1029-1039 ◽  
Author(s):  
Philippe Delerive ◽  
Karolien De Bosscher ◽  
Wim Vanden Berghe ◽  
Jean-Charles Fruchart ◽  
Guy Haegeman ◽  
...  

Abstract PPARs are ligand-activated transcription factors that regulate energy homeostasis. In addition, PPARs furthermore control the inflammatory response by antagonizing the nuclear factor-κB (NF-κB) signaling pathway. We recently demonstrated that PPARα activators increase IκBα mRNA and protein levels in human aortic smooth muscle cells. Here, we studied the molecular mechanisms by which PPARα controls IκBα expression. Using transient transfection assays, it is demonstrated that PPARα potentiates p65-stimulated IκBα transcription in a ligand-dependent manner. Site-directed mutagenesis experiments revealed that PPARα activation of IκBα transcription requires the NF-κB and Sp1 sites within IκBα promoter. Chromatin immunoprecipitation assays demonstrate that PPARα activation enhances the occupancy of the NF-κB response element in IκBα promoter in vivo. Overexpression of the oncoprotein E1A failed to inhibit PPARα-mediated IκBα promoter induction, suggesting that cAMP response element binding protein-binding protein/p300 is not involved in this mechanism. By contrast, a dominant-negative form of VDR-interacting protein 205 (DRIP205) comprising its two LXXLL motifs completely abolished PPARα ligand-mediated activation. Furthermore, cotransfection of increasing amounts of DRIP205 relieved this inhibition, suggesting that PPARα requires DRIP205 to regulate IκBα promoter activity. By contrast, DRIP205 is not involved in PPARα-mediated NF-κB transcriptional repression. Taken together, these data provide a molecular basis for PPARα-mediated induction of IκBα and demonstrate, for the first time, that PPARα may positively regulate gene transcription in the absence of functional PPAR response elements.


2006 ◽  
Vol 26 (12) ◽  
pp. 4519-4528 ◽  
Author(s):  
Zihua Gong ◽  
Marc Brackertz ◽  
Rainer Renkawitz

ABSTRACT Human p66α and p66β are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66α and one in p66β. Both p66α and p66β are SUMO-modified in vivo: p66α at two sites (Lys-30 and Lys-487) and p66β at one site (Lys-33). Expression of SUMO1 enhanced the transcriptional repression activity of Gal-p66α and Gal-p66β. Mutation of the SUMO modification sites or using a SUMO1 mutant or a dominant negative Ubc9 ligase resulted in a significant decrease of the transcriptional repression of p66α and p66β. The Mi-2/NuRD components MBD3, RbAp46, RbAp48, and HDAC1 were found to bind to both p66α and p66β in vivo. Most of the interactions were not affected by the SUMO site mutations in p66α or p66β, with two exceptions. HDAC1 binding to p66α was lost in the case of a p66αK30R mutant, and RbAp46 binding was reduced in the case of a p66βK33R mutant. These results suggest that interactions within the Mi-2/NuRD complex as well as optimal repression are mediated by SUMOylation.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Le Zhang ◽  
Momei Zhou ◽  
Richard Stanton ◽  
Jeremy Kamil ◽  
Brent J. Ryckman

ABSTRACT The tropism of human cytomegalovirus (HCMV) is influenced by the envelope glycoprotein complexes gH/gL/gO and gH/gL/UL128-131. During virion assembly, gO and the UL128-131 proteins compete for binding to gH/gL in the endoplasmic reticulum (ER). This assembly process clearly differs among strains, since Merlin (ME) virions contain abundant gH/gL/UL128-131 and little gH/gL/gO, whereas TR contains much higher levels of total gH/gL, mostly in the form of gH/gL/gO, but much lower levels of gH/gL/UL128-131 than ME. Remaining questions include (i) what are the mechanisms behind these assembly differences, and (ii) do differences reflect in vitro culture adaptations or natural genetic variations? Since the UL74(gO) open reading frame (ORF) differs in 25% of amino acids between TR and ME, we analyzed recombinant viruses in which the UL74(gO) ORF was swapped. TR virions were >40-fold more infectious than ME. Transcriptional repression of UL128-131 enhanced the infectivity of ME to the level of TR, despite still far lower levels of gH/gL/gO. Swapping the UL74(gO) ORF had no effect on either TR or ME. A quantitative immunoprecipitation approach revealed that gH/gL expression levels were within 4-fold between TR and ME, but the gO expression level was 20-fold lower for ME, which suggested differences in mRNA transcription, translation, or rapid ER-associated degradation of gO. trans-Complementation of gO expression during ME replication gave a 6-fold enhancement of infectivity beyond the 40-fold effect of UL128-131 repression alone. Overall, strain variations in the assembly of gH/gL complexes result from differences in the expression of gO and UL128-131, and selective advantages for reduced UL128-131 expression during fibroblast propagation are much stronger than those for higher gO expression. IMPORTANCE Specific genetic differences between independently isolated HCMV strains may result from purifying selection on de novo mutations arising during propagation in culture or random sampling among the diversity of genotypes present in clinical specimens. Results presented indicate that while reduced UL128-131 expression may confer a powerful selective advantage during cell-free propagation of HCMV in fibroblast cultures, selective pressures for increased gO expression are much weaker. Thus, variation in gO expression among independent strains may represent natural genotype variability present in vivo. This may have important implications for virus-host interactions, such as immune recognition, and underscores the value of studying molecular mechanisms of replication using multiple HCMV strains.


Sign in / Sign up

Export Citation Format

Share Document