scholarly journals On the question of fractal packing structure in metallic glasses

2017 ◽  
Vol 114 (32) ◽  
pp. 8458-8463 ◽  
Author(s):  
Jun Ding ◽  
Mark Asta ◽  
Robert O. Ritchie

This work addresses the long-standing debate over fractal models of packing structure in metallic glasses (MGs). Through detailed fractal and percolation analyses of MG structures, derived from simulations spanning a range of compositions and quenching rates, we conclude that there is no fractal atomic-level structure associated with the packing of all atoms or solute-centered clusters. The results are in contradiction with conclusions derived from previous studies based on analyses of shifts in radial distribution function and structure factor peaks associated with volume changes induced by pressure and compositional variations. The interpretation of such shifts is shown to be challenged by the heterogeneous nature of MG structure and deformation at the atomic scale. Moreover, our analysis in the present work illustrates clearly the percolation theory applied to MGs, for example, the percolation threshold and characteristics of percolation clusters formed by subsets of atoms, which can have important consequences for structure–property relationships in these amorphous materials.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Wu ◽  
Di Cao ◽  
Yilin Yao ◽  
Guosheng Zhang ◽  
Jinyue Wang ◽  
...  

AbstractIntroducing regions of looser atomic packing in bulk metallic glasses (BMGs) was reported to facilitate plastic deformation, rendering BMGs more ductile at room temperature. Here, we present a different alloy design approach, namely, doping the nonmetallic elements to form densely packed motifs. The enhanced structural fluctuations in Ti-, Zr- and Cu-based BMG systems leads to improved strength and renders these solutes’ atomic neighborhoods more prone to plastic deformation at an increased critical stress. As a result, we simultaneously increased the compressive plasticity (from ∼8% to unfractured), strength (from ∼1725 to 1925 MPa) and toughness (from 87 ± 10 to 165 ± 15 MPa√m), as exemplarily demonstrated for the Zr20Cu20Hf20Ti20Ni20 BMG. Our study advances the understanding of the atomic-scale origin of structure-property relationships in amorphous solids and provides a new strategy for ductilizing BMG without sacrificing strength.


1998 ◽  
Vol 4 (S2) ◽  
pp. 556-557
Author(s):  
S. Stemmer ◽  
G. Duscher ◽  
E. M. James ◽  
M. Ceh ◽  
N.D. Browning

The evaluation of the two dimensional projected atom column positions around a defect or an interface in an electronic ceramic, as it has been performed in numerous examples by (quantitative) conventional high-resolution electron microscopy (HRTEM), is often not sufficient to relate the electronic properties of the material to the structure of the defect. Information about point defects (vacancies, impurity atoms), and chemistry or bonding changes associated with the defect or interface is also required. Such complete characterization is a necessity for atomic scale interfacial or defect engineering to be attained.One instructive example where more than an image is required to understand the structure property relationships, is that of grain boundaries in Fe-doped SrTi03. Here, the different formation energies of point defects cause a charged barrier at the boundary, and a compensating space charge region around it. The sign and magnitude of the barrier depend very sensitively on the atomic scale composition and chemistry of the boundary plane.


2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


2020 ◽  
Author(s):  
Bo Han ◽  
Chen Yang ◽  
Xiaolong Xu ◽  
Yuehui Li ◽  
Ruochen Shi ◽  
...  

Abstract Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T′)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T′ phase within a range of approximately 150 nm. The 1T′-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T′/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T′/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qi Wang ◽  
Jun Ding ◽  
Longfei Zhang ◽  
Evgeny Podryabinkin ◽  
Alexander Shapeev ◽  
...  

AbstractThe elementary excitations in metallic glasses (MGs), i.e., β processes that involve hopping between nearby sub-basins, underlie many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from solely the atomic positions, however, has remained a daunting challenge. Recently, employing well-designed site environment descriptors and machine learning (ML), notable progress has been made in predicting the propensity for stress-activated β processes (i.e., shear transformations) from the static structure. However, the complex tensorial stress field and direction-dependent activation could induce non-trivial noises in the data, limiting the accuracy of the structure-property mapping learned. Here, we focus on the thermally activated elementary excitations and generate high-quality data in several Cu-Zr MGs, allowing quantitative mapping of the potential energy landscape. After fingerprinting the atomic environment with short- and medium-range interstice distribution, ML can identify the atoms with strong resistance or high compliance to thermal activation, at a high accuracy over ML models for stress-driven activation events. Interestingly, a quantitative “between-task” transferring test reveals that our learnt model can also generalize to predict the propensity of shear transformation. Our dataset is potentially useful for benchmarking future ML models on structure-property relationships in MGs.


1998 ◽  
Vol 4 (S2) ◽  
pp. 690-691
Author(s):  
C. Prouteau ◽  
G. Duscher ◽  
N. D. Browning ◽  
S. J. Pennycook ◽  
D. Verebelyi ◽  
...  

Developing an atomic scale study of the structure-property relationships of grain boundaries in high-Tc superconductors is essential to understand their current dissipation mechanism and for incorporating these materials into viable devices. Thin YBa2Cu3O7-δ films have been deposited by pulsed laser deposition (PLD) on SrTiO3 symmetric bicrystals. Transport measurements in a magnetic field have been conducted across the grain boundaries through a wide bridge. The data obtained are consistent with microstructural observation in a VG Microscopes HB603 U and a VG HB501 UX dedicated STEM. Of particular interest in the study of high-Tc materials is the use of EELS, which can highlight the presence of non-superconducting regions through interpretation of the onset positions and finestructure (ELNES) of characteristic core-edge features.The V(I) curves recorded across a 24° boundary for several magnetic fields (fig. 1 - left) show an onset critical current density followed by a linear differential ohmic behavior which gives a negative intercept.


Sign in / Sign up

Export Citation Format

Share Document