scholarly journals Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation

2016 ◽  
Vol 93 (14) ◽  
Author(s):  
Jun Ding ◽  
Mark Asta ◽  
Robert O. Ritchie
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qi Wang ◽  
Jun Ding ◽  
Longfei Zhang ◽  
Evgeny Podryabinkin ◽  
Alexander Shapeev ◽  
...  

AbstractThe elementary excitations in metallic glasses (MGs), i.e., β processes that involve hopping between nearby sub-basins, underlie many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from solely the atomic positions, however, has remained a daunting challenge. Recently, employing well-designed site environment descriptors and machine learning (ML), notable progress has been made in predicting the propensity for stress-activated β processes (i.e., shear transformations) from the static structure. However, the complex tensorial stress field and direction-dependent activation could induce non-trivial noises in the data, limiting the accuracy of the structure-property mapping learned. Here, we focus on the thermally activated elementary excitations and generate high-quality data in several Cu-Zr MGs, allowing quantitative mapping of the potential energy landscape. After fingerprinting the atomic environment with short- and medium-range interstice distribution, ML can identify the atoms with strong resistance or high compliance to thermal activation, at a high accuracy over ML models for stress-driven activation events. Interestingly, a quantitative “between-task” transferring test reveals that our learnt model can also generalize to predict the propensity of shear transformation. Our dataset is potentially useful for benchmarking future ML models on structure-property relationships in MGs.


2016 ◽  
Vol 106 ◽  
pp. 199-207 ◽  
Author(s):  
D. Şopu ◽  
C. Soyarslan ◽  
B. Sarac ◽  
S. Bargmann ◽  
M. Stoica ◽  
...  

2017 ◽  
Vol 114 (32) ◽  
pp. 8458-8463 ◽  
Author(s):  
Jun Ding ◽  
Mark Asta ◽  
Robert O. Ritchie

This work addresses the long-standing debate over fractal models of packing structure in metallic glasses (MGs). Through detailed fractal and percolation analyses of MG structures, derived from simulations spanning a range of compositions and quenching rates, we conclude that there is no fractal atomic-level structure associated with the packing of all atoms or solute-centered clusters. The results are in contradiction with conclusions derived from previous studies based on analyses of shifts in radial distribution function and structure factor peaks associated with volume changes induced by pressure and compositional variations. The interpretation of such shifts is shown to be challenged by the heterogeneous nature of MG structure and deformation at the atomic scale. Moreover, our analysis in the present work illustrates clearly the percolation theory applied to MGs, for example, the percolation threshold and characteristics of percolation clusters formed by subsets of atoms, which can have important consequences for structure–property relationships in these amorphous materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Wu ◽  
Di Cao ◽  
Yilin Yao ◽  
Guosheng Zhang ◽  
Jinyue Wang ◽  
...  

AbstractIntroducing regions of looser atomic packing in bulk metallic glasses (BMGs) was reported to facilitate plastic deformation, rendering BMGs more ductile at room temperature. Here, we present a different alloy design approach, namely, doping the nonmetallic elements to form densely packed motifs. The enhanced structural fluctuations in Ti-, Zr- and Cu-based BMG systems leads to improved strength and renders these solutes’ atomic neighborhoods more prone to plastic deformation at an increased critical stress. As a result, we simultaneously increased the compressive plasticity (from ∼8% to unfractured), strength (from ∼1725 to 1925 MPa) and toughness (from 87 ± 10 to 165 ± 15 MPa√m), as exemplarily demonstrated for the Zr20Cu20Hf20Ti20Ni20 BMG. Our study advances the understanding of the atomic-scale origin of structure-property relationships in amorphous solids and provides a new strategy for ductilizing BMG without sacrificing strength.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


2019 ◽  
Vol 18 (13) ◽  
pp. 1796-1814 ◽  
Author(s):  
Sk. Abdul Amin ◽  
Nilanjan Adhikari ◽  
Tarun Jha ◽  
Shovanlal Gayen

Camptothecin (CPT), obtained from Camptotheca acuminata (Nyssaceae), is a quinoline type of alkaloid. Apart from various traditional uses, it is mainly used as a potential cytotoxic agent acting against a variety of cancer cell lines. Though searches have been continued for last six decades, still it is a demanding task to design potent and cytotoxic CPTs. Different CPT analogs are synthesized to enhance the cytotoxic potential as well as to increase the pharmacokinetic properties of these analogs. Some of these analogs were proven to be clinically effective in different cancer cell lines. In this article, different CPT analogs have been highlighted extensively to get a detail insight about the structure-property relationships as well as different quantitative structure-activity relationships (QSARs) modeling of these analogs are also discussed. This study may be beneficial for designing newer CPT analogs in future.


1990 ◽  
Vol 21 (6) ◽  
pp. 1527-1540 ◽  
Author(s):  
D. V. Edmonds ◽  
R. C. Cochrane

Sign in / Sign up

Export Citation Format

Share Document