scholarly journals Correlating the electronic structures of metallic/semiconducting MoTe2 interface to its atomic structures

2020 ◽  
Author(s):  
Bo Han ◽  
Chen Yang ◽  
Xiaolong Xu ◽  
Yuehui Li ◽  
Ruochen Shi ◽  
...  

Abstract Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T′)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T′ phase within a range of approximately 150 nm. The 1T′-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T′/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T′/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 878
Author(s):  
Hasti Vahidi ◽  
Komal Syed ◽  
Huiming Guo ◽  
Xin Wang ◽  
Jenna Laurice Wardini ◽  
...  

Interfaces such as grain boundaries (GBs) and heterointerfaces (HIs) are known to play a crucial role in structure-property relationships of polycrystalline materials. While several methods have been used to characterize such interfaces, advanced transmission electron microscopy (TEM) and scanning TEM (STEM) techniques have proven to be uniquely powerful tools, enabling quantification of atomic structure, electronic structure, chemistry, order/disorder, and point defect distributions below the atomic scale. This review focuses on recent progress in characterization of polycrystalline oxide interfaces using S/TEM techniques including imaging, analytical spectroscopies such as energy dispersive X-ray spectroscopy (EDXS) and electron energy-loss spectroscopy (EELS) and scanning diffraction methods such as precession electron nano diffraction (PEND) and 4D-STEM. First, a brief introduction to interfaces, GBs, HIs, and relevant techniques is given. Then, experimental studies which directly correlate GB/HI S/TEM characterization with measured properties of polycrystalline oxides are presented to both strengthen our understanding of these interfaces, and to demonstrate the instrumental capabilities available in the S/TEM. Finally, existing challenges and future development opportunities are discussed. In summary, this article is prepared as a guide for scientists and engineers interested in learning about, and/or using advanced S/TEM techniques to characterize interfaces in polycrystalline materials, particularly ceramic oxides.


Author(s):  
D. J. Wallis ◽  
N. D. Browning

In electron energy loss spectroscopy (EELS), the near-edge region of a core-loss edge contains information on high-order atomic correlations. These correlations give details of the 3-D atomic structure which can be elucidated using multiple-scattering (MS) theory. MS calculations use real space clusters making them ideal for use in low-symmetry systems such as defects and interfaces. When coupled with the atomic spatial resolution capabilities of the scanning transmission electron microscope (STEM), there therefore exists the ability to obtain 3-D structural information from individual atomic scale structures. For ceramic materials where the structure-property relationships are dominated by defects and interfaces, this methodology can provide unique information on key issues such as like-ion repulsion and the presence of vacancies, impurities and structural distortion.An example of the use of MS-theory is shown in fig 1, where an experimental oxygen K-edge from SrTiO3 is compared to full MS-calculations for successive shells (a shell consists of neighboring atoms, so that 1 shell includes only nearest neighbors, 2 shells includes first and second-nearest neighbors, and so on).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Liang Sun ◽  
Yu-Xing Zhou ◽  
Xu-Dong Wang ◽  
Yu-Han Chen ◽  
Volker L. Deringer ◽  
...  

AbstractThe Ge2Sb2Te5 alloy has served as the core material in phase-change memories with high switching speed and persistent storage capability at room temperature. However widely used, this composition is not suitable for embedded memories—for example, for automotive applications, which require very high working temperatures above 300 °C. Ge–Sb–Te alloys with higher Ge content, most prominently Ge2Sb1Te2 (‘212’), have been studied as suitable alternatives, but their atomic structures and structure–property relationships have remained widely unexplored. Here, we report comprehensive first-principles simulations that give insight into those emerging materials, located on the compositional tie-line between Ge2Sb1Te2 and elemental Ge, allowing for a direct comparison with the established Ge2Sb2Te5 material. Electronic-structure computations and smooth overlap of atomic positions (SOAP) similarity analyses explain the role of excess Ge content in the amorphous phases. Together with energetic analyses, a compositional threshold is identified for the viability of a homogeneous amorphous phase (‘zero bit’), which is required for memory applications. Based on the acquired knowledge at the atomic scale, we provide a materials design strategy for high-performance embedded phase-change memories with balanced speed and stability, as well as potentially good cycling capability.


1998 ◽  
Vol 4 (S2) ◽  
pp. 556-557
Author(s):  
S. Stemmer ◽  
G. Duscher ◽  
E. M. James ◽  
M. Ceh ◽  
N.D. Browning

The evaluation of the two dimensional projected atom column positions around a defect or an interface in an electronic ceramic, as it has been performed in numerous examples by (quantitative) conventional high-resolution electron microscopy (HRTEM), is often not sufficient to relate the electronic properties of the material to the structure of the defect. Information about point defects (vacancies, impurity atoms), and chemistry or bonding changes associated with the defect or interface is also required. Such complete characterization is a necessity for atomic scale interfacial or defect engineering to be attained.One instructive example where more than an image is required to understand the structure property relationships, is that of grain boundaries in Fe-doped SrTi03. Here, the different formation energies of point defects cause a charged barrier at the boundary, and a compensating space charge region around it. The sign and magnitude of the barrier depend very sensitively on the atomic scale composition and chemistry of the boundary plane.


2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


1998 ◽  
Vol 4 (S2) ◽  
pp. 760-761
Author(s):  
S. T. Pantelides ◽  
S. J. Pennycook ◽  
M. F. Chisholm ◽  
A. Maiti ◽  
Y. Yan ◽  
...  

Modern high-performance computers are now capable of calculations that can be used to determine the preferred atomic arrangements in complex systems. Both first-principles and semiempirical approaches have been developed with complementary capabilities. At the same time, powerful transmission electron microscopes have been developed that yield direct atomic-scale images of crystals and extended defects such as dislocations, grain boundaries and buried interfaces. This paper presents several examples where a synergistic approach combining theoretical results, Z-contrast scanning transmission electron microscopy, and spatially resolved electron energy loss spectroscopy (EELS) have led to the elucidation of complex atomic structures. In some cases, theory predicts, experiment confirms and expands and theory revisits; in other cases, observations come first and theory helps put together a comprehensive picture or goes beyond the original observations with new predictions. In both cases, equilibrium structures, impurity or stressinduced structural transformations, and dynamical processes such as diffusion, segregation or precipitation are elucidated in great detail.


2020 ◽  
Author(s):  
Pengfei Xie ◽  
Tiancheng Pu ◽  
Gregory Aranovich ◽  
Jiawei Guo ◽  
Marc Donohue ◽  
...  

Abstract Metal-exchanged zeolites have been widely used in industrial catalysis and separation, but fundamental understanding of their structure-property relationships has remained challenging, largely due to the lack of quantitative information concerning the atomic structures and reaction-relevant adsorption properties of the embedded metal active sites. We report on the use of low-temperature chemisorption to titrate Cu-exchanged ZSM5. Quantitative descriptors of the atomic structures and adsorption properties of Cu-ZSM5 are established by combining atomistic simulation, DFT calculations, operando molecular spectroscopy, chemisorption and titration measurements. These descriptors are then applied to interpret the catalytic performance of Cu-ZSM5 for NO decomposition. Linear correlations are established to bridge the low-temperature adsorption analytics and high-temperature reaction kinetics, which are demonstrated to be generally applicable for understanding the structure-property relationships of metal exchanged zeolites and foregrounded for guiding the development of advanced catalytic materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Sytze de Graaf ◽  
Majid Ahmadi ◽  
Ivan Lazić ◽  
Eric Bosch ◽  
Bart J. Kooi

Scanning transmission electron microscopy (STEM) is the most widespread adopted tool for atomic scale characterization of two-dimensional (2D) materials. However, damage free imaging of 2D materials with electrons has remained...


Sign in / Sign up

Export Citation Format

Share Document