scholarly journals Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter

2017 ◽  
Vol 114 (38) ◽  
pp. 10089-10094 ◽  
Author(s):  
Lei Han ◽  
Yongping Zhu ◽  
Min Liu ◽  
Ye Zhou ◽  
Guangyuan Lu ◽  
...  

Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 fromArabidopsis thaliana(AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2′-deoxycytidine 5′-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.

2019 ◽  
Vol 116 (32) ◽  
pp. 15947-15956 ◽  
Author(s):  
Michael V. LeVine ◽  
Daniel S. Terry ◽  
George Khelashvili ◽  
Zarek S. Siegel ◽  
Matthias Quick ◽  
...  

Neurotransmitter:sodium symporters (NSSs) in the SLC6 family terminate neurotransmission by coupling the thermodynamically favorable transport of ions to the thermodynamically unfavorable transport of neurotransmitter back into presynaptic neurons. Results from many structural, functional, and computational studies on LeuT, a bacterial NSS homolog, have provided critical insight into the mechanism of sodium-coupled transport, but the mechanism underlying substrate-specific transport rates is still not understood. We present a combination of molecular dynamics simulations, single-molecule fluorescence resonance energy transfer (smFRET) imaging, and measurements of Na+ binding and substrate transport that reveals an allosteric substrate specificity mechanism. In this mechanism, residues F259 and I359 in the substrate binding pocket couple the binding of substrate to Na+ release from the Na2 site by allosterically modulating the stability of a partially open, inward-facing state. We propose a model for transport selectivity in which residues F259 and I359 act as a volumetric sensor that inhibits the transport of bulky amino acids.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2018 ◽  
Author(s):  
Alexander Carl DeHaven

This thesis contains four topic areas: a review of single-molecule microscropy methods and splicing, conformational dynamics of stem II of the U2 snRNA, the impact of post-transcriptional modifications on U2 snRNA folding dynamics, and preliminary findings on Mango aptamer folding dynamics.


Author(s):  
Hsin-Chih Yeh ◽  
Christopher M. Puleo ◽  
Yi-Ping Ho ◽  
Tza-Huei Wang

In this report, we review several single-molecule detection (SMD) methods and newly developed nanocrystal-mediated single-fluorophore strategies for ultrasensitive and specific analysis of genomic sequences. These include techniques, such as quantum dot (QD)-mediated fluorescence resonance energy transfer (FRET) technology and dual-color fluorescence coincidence and colocalization analysis, which allow separation-free detection of low-abundance DNA sequences and mutational analysis of oncogenes. Microfluidic approaches developed for use with single-molecule detection to achieve rapid, low-volume, and quantitative analysis of nucleic acids, such as electrokinetic manipulation of single molecules and confinement of sub-nanoliter samples using microfluidic networks integrated with valves, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document