transport of ions
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 16)

H-INDEX

45
(FIVE YEARS 0)

2022 ◽  
Vol 3 (1) ◽  
pp. 78-87
Author(s):  
Reza Shirsavar ◽  
Saeid Mollaei ◽  
Mansoure Moeini Rizi ◽  
Ali-Reza Moradi ◽  
Ahmad Amjadi ◽  
...  

Applying a constant electric field on a suspended film of liquid that carries an electric current, either by the transport of ions or surface charges, induces a rotation in the film. This system is known as “liquid film motor”. So far, the effect of permittivity of the liquid on its rotation has been ignored. We showed that the permittivity of the liquid can significantly affect the dynamics of rotation. Using an experimental approach, we studied the liquid film rotation for a broad range of pure liquids with diverse permittivities and surface tensions. We observed two different regimes of rotation depending on the permittivity of the liquids. We also found that there is no correlation between the surface tension of the liquid and the angular velocity of the rotation. We considered a theoretical framework and suggested scenarios to explain our experimental observations. These results help in better understanding the physics of liquid film motors and suggest opportunities for new flow manipulation techniques at small scales.



2021 ◽  
Author(s):  
Jordane Preto ◽  
Hubert Gorny ◽  
Isabelle Krimm

The voltage-dependent anion channel 1 (VDAC1) is a crucial mitochondrial transporter which controls the flow of ions and respiratory metabolites entering or exiting mitochondria. As a voltage-gated channel, VDAC1 can switch between a high conducting "open" state and low conducting "closed" states emerging at high transmembrane potential. Although cell homeostasis depends on channel gating to regulate the transport of ions and metabolites, structural hallmarks characterizing the closed states remain unknown. Here we performed microsecond accelerated molecular dynamics to highlight a vast region of VDAC1 conformational landscape accessible at typical voltage known to promote closure. Conformers exhibiting stable subconducting properties inherent to closed states were identified. In all cases, the low conductance was due to the particular positioning of an unfolded part of the N-terminus which obstructed the channel pore. While the N-terminal tail was found to be sensitive to voltage orientation, our low-conducting models suggest that closed states predominantly take place from disordered events and do not result from the displacement of a voltage sensor or a significant change in the pore. In addition, our results were consistent with conductance jumps observed in experiments and corroborates a recent study describing entropy as a key factor for VDAC gating.



Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8279
Author(s):  
Chenwei Xiong ◽  
Boyin Zhang ◽  
Rong Zhang ◽  
Yifan Liu

Polyelectrolyte hydrogel ionic diodes (PHIDs) have recently emerged as a unique set of iontronic devices. Such diodes are built on microfluidic chips that feature polyelectrolyte hydrogel junctions and rectify ionic currents owing to the heterogeneous distribution and transport of ions across the junctions. In this paper, we provide the first account of a study on the ion transport behavior of PHIDs through an experimental investigation and numerical simulation. The effects of bulk ionic strength and hydrogel pore confinement are experimentally investigated. The ionic current rectification (ICR) exhibits saturation in a micromolar regime and responds to hydrogel pore size, which is subsequently verified in a simulation. Furthermore, we experimentally show that the rectification is sensitive to the dose of immobilized DNA with an exhibited sensitivity of 1 ng/μL. We anticipate our findings would be beneficial to the design of PHID-based biosensors for electrical detection of charged biomolecules.



Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7012
Author(s):  
Pengfei Ma ◽  
Jianxiang Zheng ◽  
Danting Zhao ◽  
Wenjie Zhang ◽  
Gonghao Lu ◽  
...  

The selective transport of ions in nanopores attracts broad interest due to their potential applications in chemical separation, ion filtration, seawater desalination, and energy conversion. The ion selectivity based on the ion dehydration and steric hindrance is still limited by the very similar diameter between different hydrated ions. The selectivity can only separate specific ion species, lacking a general separation effect. Herein, we report the highly ionic selective transport in charged nanopore through the combination of hydraulic pressure and electric field. Based on the coupled Poisson–Nernst–Planck (PNP) and Navier–Stokes (NS) equations, the calculation results suggest that the coupling of hydraulic pressure and electric field can significantly enhance the ion selectivity compared to the results under the single driven force of hydraulic pressure or electric field. Different from the material-property-based ion selective transport, this method endows the general separation effect between different kinds of ions. Through the appropriate combination of hydraulic pressure and electric field, an extremely high selectivity ratio can be achieved. Further in-depth analysis reveals the influence of nanopore diameter, surface charge density and ionic strength on the selectivity ratio. These findings provide a potential route for high-performance ionic selective transport and separation in nanofluidic systems.



2021 ◽  
Vol 118 (45) ◽  
pp. e2116586118
Author(s):  
Signe Kjelstrup ◽  
Anders Lervik


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 726
Author(s):  
Patrick Dutournié ◽  
T. Jean Daou ◽  
Sébastien Déon

The assessment of physicochemical parameters governing the transport of ions through nanoporous membranes is a major challenge due to the difficulty in experimental estimation of the dielectric constant of the solution confined in nanopores and the volumetric membrane charge. Numerical identification by adjusting their values to fit experimental data is a potential solution, but this method is complicated for single-salt solutions due to the infinite number of couples that can describe a rejection curve. In this study, a novel procedure based on physical simplifications which allows the estimation of a range of values for these two parameters is proposed. It is shown here that the evolution of the interval of membrane charge with salt concentration can be described in all the experimental conditions by the Langmuir–Freundlich hybrid adsorption isotherm. Finally, it is highlighted that considering the mean dielectric constant and the adsorption isotherms assessed from a range of concentrations allowed a good prediction of rejection curves, irrespective of the salt and membrane considered.



2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Olga I. Vinogradova ◽  
Elena F. Silkina ◽  
Evgeny S. Asmolov


2021 ◽  
Vol 31 (3) ◽  
pp. 3-39
Author(s):  
T. V. Pomozov ◽  
◽  
N. V. Krasnov

The results of numerical simulation of the ion-optical scheme of ion transport at atmospheric pressure are presented. The possibility of efficient transport of ions in the system under consideration with an increase in the local curvature of the equipotential lines of the electrostatic field in the vicinity of the nozzle by shaping (changing the shape) of this electrode is shown. Shaping the nozzle allows to increase the value of Iсопло by approximately 1.6 times. Taking into account the gas-dynamic effect on the transport of the ion beam through the nozzle makes it possible to obtain the values of the transmission by 70% higher.



2021 ◽  
Vol 17 (8) ◽  
pp. e1009278
Author(s):  
Govindarajan Sudha ◽  
Claudio Bassot ◽  
John Lamb ◽  
Nanjiang Shu ◽  
Yan Huang ◽  
...  

CPA/AT transporters are made up of scaffold and a core domain. The core domain contains two non-canonical helices (broken or reentrant) that mediate the transport of ions, amino acids or other charged compounds. During evolution, these transporters have undergone substantial changes in structure, topology and function. To shed light on these structural transitions, we create models for all families using an integrated topology annotation method. We find that the CPA/AT transporters can be classified into four fold-types based on their structure; (1) the CPA-broken fold-type, (2) the CPA-reentrant fold-type, (3) the BART fold-type, and (4) a previously not described fold-type, the Reentrant-Helix-Reentrant fold-type. Several topological transitions are identified, including the transition between a broken and reentrant helix, one transition between a loop and a reentrant helix, complete changes of orientation, and changes in the number of scaffold helices. These transitions are mainly caused by gene duplication and shuffling events. Structural models, topology information and other details are presented in a searchable database, CPAfold (cpafold.bioinfo.se).



Sign in / Sign up

Export Citation Format

Share Document