scholarly journals Interaction of intramembrane metalloprotease SpoIVFB with substrate Pro-σK

2017 ◽  
Vol 114 (50) ◽  
pp. E10677-E10686 ◽  
Author(s):  
Sabyasachi Halder ◽  
Daniel Parrell ◽  
Douglas Whitten ◽  
Michael Feig ◽  
Lee Kroos

Intramembrane proteases (IPs) cleave membrane-associated substrates in nearly all organisms and regulate diverse processes. A better understanding of how these enzymes interact with their substrates is necessary for rational design of IP modulators. We show that interaction ofBacillus subtilisIP SpoIVFB with its substrate Pro-σKdepends on particular residues in the interdomain linker of SpoIVFB. The linker plus either the N-terminal membrane domain or the C-terminal cystathione-β-synthase (CBS) domain of SpoIVFB was sufficient for the interaction but not for cleavage of Pro-σK. Chemical cross-linking and mass spectrometry of purified, inactive SpoIVFB–Pro-σKcomplex indicated residues of the two proteins in proximity. A structural model of the complex was built via partial homology and by using constraints based on cross-linking data. In the model, the Proregion of Pro-σKloops into the membrane domain of SpoIVFB, and the rest of Pro-σKinteracts extensively with the linker and the CBS domain of SpoIVFB. The extensive interaction is proposed to allow coordination between ATP binding by the CBS domain and Pro-σKcleavage by the membrane domain.

2021 ◽  
Author(s):  
Sandra Olenic ◽  
Lim Heo ◽  
Michael Feig ◽  
Lee Kroos

Intramembrane proteases of diverse signaling pathways use membrane-embedded active sites to cleave membrane-associated substrates. Interactions of intramembrane metalloproteases with modulators are poorly understood. Inhibition of Bacillus subtilis intramembrane metalloprotease SpoIVFB requires BofA and SpoIVFA, which transiently prevent cleavage of Pro-σK during endosporulation. Three conserved BofA residues (N48, N61, T64) in or near predicted transmembrane segment (TMS) 2 were found to be required for SpoIVFB inhibition. Disulfide cross-linking indicated that BofA TMS2 occupies the SpoIVFB active site region. BofA and SpoIVFA neither prevented SpoIVFB from interacting with Pro-σK in co-purification assays nor interfered with cross-linking between the C-terminal regions of Pro-σK and SpoIVFB. However, BofA and SpoIVFA did interfere with cross-linking between the N-terminal Proregion of Pro-σK and the SpoIVFB active site region and interdomain linker. A BofA variant lacking predicted TMS1, in combination with SpoIVFA, was less effective at interfering with some of the cross-links and slightly less effective at inhibiting cleavage of Pro-σK by SpoIVFB. A structural model was built of SpoIVFB in complex with BofA and parts of SpoIVFA and Pro-σK, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that N48 in BofA TMS2 interacts with T64 (and possibly N61) of BofA to stabilize a membrane-embedded C-terminal region. SpoIVFA is predicted to bridge the BofA C-terminal region and SpoIVFB. Thus, the two inhibitory proteins block access of the Pro-σK N-terminal region to the SpoIVFB active site region. Our findings may inform efforts to develop selective inhibitors of intramembrane metalloproteases.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


2021 ◽  
Author(s):  
Dmitri R. Davydov ◽  
Bikash Dangi ◽  
Guihua Yue ◽  
Bhagwat Prasad ◽  
Viktor G. Zgoda

This study aimed on exploration of the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) in the human liver on drug metabolism. Using membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide (BPM) and 4-(N-succinimidylcarboxy)benzophenone (BPS), we explored the array of its protein-protein interactions (proteome) in human liver microsomes (HLM) with chemical cross-linking mass spectrometry (CXMS). Exposure of bait-incorporated HLM samples to light was followed by isolation of the His-tagged bait protein and its cross-linked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the cross-linked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively cross-linked partners of CYP2E1 are cytochromes P450 2A6, 3A4, 2C9, and 4A11. We also detected the conjugates of CYP2E1 with UDP-glucuronosyltransferases (UGTs) 1A6, 1A9, 2B4, 2B15, and 2B17. These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes. Of particular interest is the observation of efficient cross-linking of CYP2E1 with CYP4A11. This enzyme plays a central role in the synthesis of vasoactive eicosanoids and its interactions with alcohol-inducible CYP2E1 may shed light on the mechanisms of alcohol-induced hypertension.


Sign in / Sign up

Export Citation Format

Share Document