scholarly journals Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors

2018 ◽  
Vol 115 (13) ◽  
pp. 3488-3493 ◽  
Author(s):  
Ulrich Hohmann ◽  
Julia Santiago ◽  
Joël Nicolet ◽  
Vilde Olsson ◽  
Fabio M. Spiga ◽  
...  

Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor–coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor–coreceptor heteromerization in planta. A functional BRI1–HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development.

2019 ◽  
Author(s):  
Qingtong Zhou ◽  
Dehua Yang ◽  
Meng Wu ◽  
Yu Guo ◽  
Wangjing Guo ◽  
...  

AbstractClass A G protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. GPCR activation is an allosteric process that links agonist binding to G protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue-level changes of this trigger remain less well understood. Here, by analyzing over 230 high-resolution structures of class A GPCRs, we discovered a modular, universal GPCR activation pathway that unites previous findings into a common activation mechanism, directly linking the bottom of ligand-binding pocket with G protein-coupling region. We suggest that the modular nature of the universal GPCR activation pathway allowed for the decoupling of the evolution of the ligand binding site, G protein binding region and the residues important for receptor activation. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Qingtong Zhou ◽  
Dehua Yang ◽  
Meng Wu ◽  
Yu Guo ◽  
Wanjing Guo ◽  
...  

Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G-protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G-protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G-protein-binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.


2003 ◽  
Vol 31 (1) ◽  
pp. 35-39 ◽  
Author(s):  
M. Wheatley ◽  
S.R. Hawtin ◽  
V.J. Wesley ◽  
H.C. Howard ◽  
J. Simms ◽  
...  

A fundamental issue in molecular pharmacology is to define how agonist–receptor interaction differs from that of antagonist–receptor interaction. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein-coupled receptors (GPCRs) that are activated by vasopressin, oxytocin (OT) and related peptides. A segment of the N-terminus that was required for agonist binding, but not antagonist binding, was identified by characterizing truncated V1aR constructs. Site-directed mutagenesis revealed that a single residue (Arg46) was critical for agonist binding and receptor activation. The N-terminus of the related OT receptor (OTR) could recover agonist binding in a chimaeric OTRN–V1aR construct. Furthermore, Arg34 of the human OTR, which corresponds to Arg46 of the rat V1aR, provided agonist-specific binding epitopes in the OTR, indicating a conserved function of this locus throughout this GPCR subfamily. Mutation of Arg46 revealed that high-affinity agonist binding had an absolute requirement for arginine at this position.


2007 ◽  
Vol 35 (4) ◽  
pp. 717-720 ◽  
Author(s):  
M. Wheatley ◽  
J. Simms ◽  
S.R. Hawtin ◽  
V.J. Wesley ◽  
D. Wootten ◽  
...  

GPCRs (G-protein-coupled receptors) are a large family of structurally related proteins which mediate their effects by coupling to G-proteins. The V1aR (V1a vasopressin receptor) is a member of a family of related GPCRs that are activated by vasopressin {AVP ([Arg8]vasopressin)}, OT (oxytocin) and related peptides. These receptors are members of a subfamily of Family A GPCRs called the neurohypophysial peptide hormone receptor family. GPCRs exhibit a conserved tertiary structure comprising a bundle of seven TM (transmembrane) helices linked by alternating ECLs (extracellular loops) and ICLs (intracellular loops). The cluster of TM helices is functionally important for ligand binding, and, furthermore, activation of GPCRs involves movement of these TM helices. Consequently, it might be assumed that the extracellular face of GPCRs is composed of peptide linkers that merely connect important TM helices. However, using a systematic mutagenesis approach and focusing on the N-terminus and the second ECL of the V1aR, we have established that these extracellular domains fulfil a range of important roles with respect to GPCR signalling, including agonist binding, ligand selectivity and receptor activation.


2021 ◽  
Vol 118 (18) ◽  
pp. e2019497118
Author(s):  
Masaki Takahashi ◽  
Ryo Amano ◽  
Michiru Ozawa ◽  
Anna Martinez ◽  
Kazumasa Akita ◽  
...  

G protein–coupled receptors (GPCRs) play diverse roles in physiological processes, and hence the ligands to modulate GPCRs have served as important molecules in biological and pharmacological approaches. However, the exploration of novel ligands for GPCR still remains an arduous challenge. In this study, we report a method for the discovery of nucleic acid ligands against GPCRs by an advanced RNA aptamer screening technology that employs a virus-like particle (VLP), exposing the GPCR of interest. An array of biochemical analyses coupled with a cell-based assay revealed that one of the aptamers raised against purinergic receptor P2Y2 (P2RY2), a GPCR, exhibits an activation potency to unliganded receptor and prohibits a further receptor activation by endogenous ligand, behaving like a partial agonist. However, the aptamer enhances the activity of intrinsic ligand-binding P2RY2, thereby acting as a positive allosteric modulator (PAM) to liganded receptor. Our findings demonstrate that the nucleic acid aptamer conditionally exerts PAM and agonist effects on GPCRs, depending on their intrinsic ligand binding state. These results indicate the validity of our VLP-based aptamer screening targeting GPCR and reemphasize the great potential of nucleic acid ligands for exploring the GPCR activation mechanism and therapeutic applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Max Bernhard ◽  
Bodo Laube

Abstract The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.


Science ◽  
2013 ◽  
Vol 341 (6148) ◽  
pp. 889-892 ◽  
Author(s):  
Julia Santiago ◽  
Christine Henzler ◽  
Michael Hothorn

Brassinosteroids, which control plant growth and development, are sensed by the leucine-rich repeat (LRR) domain of the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1), but it is unknown how steroid binding at the cell surface activates the cytoplasmic kinase domain of the receptor. A family of somatic embryogenesis receptor kinases (SERKs) has been genetically implicated in mediating early brassinosteroid signaling events. We found a direct and steroid-dependent interaction between the BRI1 and SERK1 LRR domains by analysis of their complex crystal structure at 3.3 angstrom resolution. We show that the SERK1 LRR domain is involved in steroid sensing and, through receptor–co-receptor heteromerization, in the activation of the BRI1 signaling pathway. Our work reveals how known missense mutations in BRI1 and in SERKs modulate brassinosteroid signaling and the targeting mechanism of BRI1 receptor antagonists.


Sign in / Sign up

Export Citation Format

Share Document