scholarly journals A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability

2018 ◽  
Vol 115 (38) ◽  
pp. E8900-E8908 ◽  
Author(s):  
Jessica B. A. Sadler ◽  
Dawn M. Wenzel ◽  
Lauren K. Williams ◽  
Marta Guindo-Martínez ◽  
Steven L. Alam ◽  
...  

Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.

2018 ◽  
Author(s):  
Jessica B.A. Sadler ◽  
Dawn M. Wenzel ◽  
Lauren K. Williams ◽  
Marta Guindo-Martínez ◽  
Steven L. Alam ◽  
...  

AbstractCytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery and is tightly regulated by Charged Multivesicular body Protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4CT232 (rs35094336), increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: the CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome mis-segregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint, and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.Significance StatementThe final step of cell division, abscission, is temporally regulated by the Aurora B kinase and CHMP4C in a conserved pathway called the abscission checkpoint which arrests abscission in the presence of lingering mitotic problems. Despite extensive study, the physiological importance of this pathway to human health has remained elusive. We now demonstrate that a cancer predisposing polymorphism in CHMP4C disrupts the abscission checkpoint and results in DNA damage accumulation. Moreover, deficits in this checkpoint synergize with p53 loss and generate aneuploidy under stress conditions that increase the frequency of chromosome missegregation. Therefore, cells expressing the cancer-associated polymorphism in CHMP4C are genetically unstable, thus suggesting a novel oncogenic mechanism that may involve the dysregulation of abscission.


2009 ◽  
Vol 37 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Suman Lata ◽  
Guy Schoehn ◽  
Julianna Solomons ◽  
Ricardo Pires ◽  
Heinrich G. Göttlinger ◽  
...  

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A–CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


2009 ◽  
Vol 418 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Xi Zhou ◽  
Shujuan Pan ◽  
Le Sun ◽  
Joe Corvera ◽  
Yu-Chen Lee ◽  
...  

The Bro1 domain of Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], which plays important roles in endosomal sorting and multiple ESCRT (endosomal sorting complex required for transport)-linked processes, contains the docking sites for the ESCRT-III component CHMP4b (charged multivesicular body protein 4b) and the regulatory tyrosine kinase, Src. Although the structural bases for these docking sites have been defined by crystallography studies, it has not been determined whether these sites are available in the native state of Alix. In the present study, we demonstrate that these two docking sites are unavailable in recombinant Alix under native conditions and that their availabilities can be induced by detergents. In HEK (human embryonic kidney)-293 cell lysates, these two docking sites are not available in cytosolic Alix, but are available in membrane-bound Alix. These findings show that the native state of Alix does not have a functional Bro1 domain and predict that Alix's involvement in endosomal sorting and other ESCRT-linked processes requires an activation step that relieves the autoinhibition of the Bro1 domain.


2008 ◽  
Vol 411 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Joseph D. Dukes ◽  
Judith D. Richardson ◽  
Ruth Simmons ◽  
Paul Whitley

In eukaryotic cells, the completion of cytokinesis is dependent on membrane trafficking events to deliver membrane to the site of abscission. Golgi and recycling endosomal-derived proteins are required for the terminal stages of cytokinesis. Recently, protein subunits of the ESCRT (endosomal sorting complexes required for transport) that are normally involved in late endosome to lysosome trafficking have also been implicated in abscission. Here, we report that a subunit, CHMP3 (charged multivesicular body protein-3), of ESCRT-III localizes at the midbody. Deletion of the C-terminal autoinhibitory domain of CHMP3 inhibits cytokinesis. At the midbody, CHMP3 does not co-localize with Rab11, suggesting that it is not present on recycling endosomes. These results combined provide compelling evidence that proteins involved in late endosomal function are necessary for the end stages of cytokinesis.


2011 ◽  
Vol 286 (46) ◽  
pp. 40276-40286 ◽  
Author(s):  
Gilles Bodon ◽  
Romain Chassefeyre ◽  
Karin Pernet-Gallay ◽  
Nicolas Martinelli ◽  
Grégory Effantin ◽  
...  

2012 ◽  
Vol 23 (22) ◽  
pp. 4347-4361 ◽  
Author(s):  
Seongju Lee ◽  
Jaerak Chang ◽  
Benoît Renvoisé ◽  
Anita Tipirneni ◽  
Sarah Yang ◽  
...  

Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission.


2009 ◽  
Vol 37 (1) ◽  
pp. 208-212 ◽  
Author(s):  
Hazel Urwin ◽  
Shabnam Ghazi-Noori ◽  
John Collinge ◽  
Adrian Isaacs

Mutations in the CHMP2B (charged multivesicular body protein 2B) gene that lead to C-terminal truncations of the protein can cause frontotemporal dementia. CHMP2B is a member of ESCRT-III (endosomal sorting complex required for transport III), which is required for formation of the multivesicular body, a late endosomal structure that fuses with the lysosome to degrade endocytosed proteins. Overexpression of mutant C-terminally truncated CHMP2B proteins produces an enlarged endosomal phenotype in PC12 and human neuroblastoma cells, which is likely to be due to a dominant-negative effect on endosomal function. Disruption of normal endosomal trafficking is likely to affect the transport of neuronal growth factors and autophagic clearance of proteins, both of which could contribute to neurodegeneration in frontotemporal dementia.


2018 ◽  
Vol 115 (52) ◽  
pp. E12235-E12244 ◽  
Author(s):  
Lisa L. Hua ◽  
Takashi Mikawa

Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuting Guan ◽  
Xiujie Liang ◽  
Ziyuan Ma ◽  
Hailong Hu ◽  
Hongbo Liu ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified loci for kidney disease, but the causal variants, genes, and pathways remain unknown. Here we identify two kidney disease genes Dipeptidase 1 (DPEP1) and Charged Multivesicular Body Protein 1 A (CHMP1A) via the triangulation of kidney function GWAS, human kidney expression, and methylation quantitative trait loci. Using single-cell chromatin accessibility and genome editing, we fine map the region that controls the expression of both genes. Mouse genetic models demonstrate the causal roles of both genes in kidney disease. Cellular studies indicate that both Dpep1 and Chmp1a are important regulators of a single pathway, ferroptosis and lead to kidney disease development via altering cellular iron trafficking.


Sign in / Sign up

Export Citation Format

Share Document