scholarly journals Detecting different topologies immanent in scale-free networks with the same degree distribution

2019 ◽  
Vol 116 (14) ◽  
pp. 6701-6706 ◽  
Author(s):  
Dimitrios Tsiotas

The scale-free (SF) property is a major concept in complex networks, and it is based on the definition that an SF network has a degree distribution that follows a power-law (PL) pattern. This paper highlights that not all networks with a PL degree distribution arise through a Barabási−Albert (BA) preferential attachment growth process, a fact that, although evident from the literature, is often overlooked by many researchers. For this purpose, it is demonstrated, with simulations, that established measures of network topology do not suffice to distinguish between BA networks and other (random-like and lattice-like) SF networks with the same degree distribution. Additionally, it is examined whether an existing self-similarity metric proposed for the definition of the SF property is also capable of distinguishing different SF topologies with the same degree distribution. To contribute to this discrimination, this paper introduces a spectral metric, which is shown to be more capable of distinguishing between different SF topologies with the same degree distribution, in comparison with the existing metrics.

2007 ◽  
Vol 17 (07) ◽  
pp. 2447-2452 ◽  
Author(s):  
S. BOCCALETTI ◽  
D.-U. HWANG ◽  
V. LATORA

We introduce a fully nonhierarchical network growing mechanism, that furthermore does not impose explicit preferential attachment rules. The growing procedure produces a graph featuring power-law degree and clustering distributions, and manifesting slightly disassortative degree-degree correlations. The rigorous rate equations for the evolution of the degree distribution and for the conditional degree-degree probability are derived.


2020 ◽  
Vol 117 (26) ◽  
pp. 14812-14818 ◽  
Author(s):  
Bin Zhou ◽  
Xiangyi Meng ◽  
H. Eugene Stanley

Whether real-world complex networks are scale free or not has long been controversial. Recently, in Broido and Clauset [A. D. Broido, A. Clauset,Nat. Commun.10, 1017 (2019)], it was claimed that the degree distributions of real-world networks are rarely power law under statistical tests. Here, we attempt to address this issue by defining a fundamental property possessed by each link, the degree–degree distance, the distribution of which also shows signs of being power law by our empirical study. Surprisingly, although full-range statistical tests show that degree distributions are not often power law in real-world networks, we find that in more than half of the cases the degree–degree distance distributions can still be described by power laws. To explain these findings, we introduce a bidirectional preferential selection model where the link configuration is a randomly weighted, two-way selection process. The model does not always produce solid power-law distributions but predicts that the degree–degree distance distribution exhibits stronger power-law behavior than the degree distribution of a finite-size network, especially when the network is dense. We test the strength of our model and its predictive power by examining how real-world networks evolve into an overly dense stage and how the corresponding distributions change. We propose that being scale free is a property of a complex network that should be determined by its underlying mechanism (e.g., preferential attachment) rather than by apparent distribution statistics of finite size. We thus conclude that the degree–degree distance distribution better represents the scale-free property of a complex network.


2017 ◽  
Vol 28 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Ould Baba ◽  
O. Bamaarouf ◽  
A. Rachadi ◽  
H. Ez-Zahraouy

Using numerical simulations, we investigate the effects of the connectivity and topologies of network on the quality of transport between connected scale free networks. Hence, the flow as the electrical conductance between connected networks is calculated. It is found that the conductance distribution between networks follow a power law [Formula: see text] where [Formula: see text] is the exponent of the global Network of network, we show that the transport in the symmetric growing preferential attachment connection is more efficient than the symmetric static preferential attachment connection. Furthermore, the differences of transport and networks communications properties in the different cases are discussed.


2018 ◽  
Vol 21 ◽  
pp. 00012
Author(s):  
Andrzej Paszkiewicz

The paper concerns the use of the scale-free networks theory and the power law in designing wireless networks. An approach based on generating random networks as well as on the classic Barabási-Albert algorithm were presented. The paper presents a new approach taking the limited resources for wireless networks into account, such as available bandwidth. In addition, thanks to the introduction of opportunities for dynamic node removal it was possible to realign processes occurring in wireless networks. After introduction of these modifications, the obtained results were analyzed in terms of a power law and the degree distribution of each node.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
István Fazekas ◽  
Bettina Porvázsnyik

A random graph evolution mechanism is defined. The evolution studied is a combination of the preferential attachment model and the interaction of four vertices. The asymptotic behaviour of the graph is described. It is proved that the graph exhibits a power law degree distribution; in other words, it is scale-free. It turns out that any exponent in(2,∞)can be achieved. The proofs are based on martingale methods.


2010 ◽  
Vol 20 (03) ◽  
pp. 753-763 ◽  
Author(s):  
J. A. ALMENDRAL ◽  
I. LEYVA ◽  
I. SENDIÑA-NADAL ◽  
S. BOCCALETTI

In natural systems, many processes can be represented as the result of the interaction of self-sustained oscillators on top of complex topological wirings of connections. We review some of the main results on the setting of collective (synchronized) behaviors in globally and locally identical coupled oscillators, and then discuss in more detail the main formalism that gives the necessary condition for the stability of a synchronous motion. Finally, we also briefly describe a case of a growing network of nonidentical oscillators, where the growth process is entirely guided by dynamical rules, and where the final synchronized state is accompanied with the emergence of a specific statistical feature (the scale-free property) in the network's degree distribution.


2016 ◽  
Vol 27 (11) ◽  
pp. 1650125 ◽  
Author(s):  
Han-Xin Yang ◽  
Bing-Hong Wang

We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent [Formula: see text] of power-law degree distribution. It is found that the epidemic threshold is minimized at about [Formula: see text]. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 998-1014
Author(s):  
Mikhail Tamm ◽  
Dmitry Koval ◽  
Vladimir Stadnichuk

Experimentally observed complex networks are often scale-free, small-world and have an unexpectedly large number of small cycles. An Apollonian network is one notable example of a model network simultaneously having all three of these properties. This network is constructed by a deterministic procedure of consequentially splitting a triangle into smaller and smaller triangles. In this paper, a similar construction based on the consequential splitting of tetragons and other polygons with an even number of edges is presented. The suggested procedure is stochastic and results in the ensemble of planar scale-free graphs. In the limit of a large number of splittings, the degree distribution of the graph converges to a true power law with an exponent, which is smaller than three in the case of tetragons and larger than three for polygons with a larger number of edges. It is shown that it is possible to stochastically mix tetragon-based and hexagon-based constructions to obtain an ensemble of graphs with a tunable exponent of degree distribution. Other possible planar generalizations of the Apollonian procedure are also briefly discussed.


2021 ◽  
Vol 53 (4) ◽  
pp. 1090-1114
Author(s):  
Peter Gracar ◽  
Lukas Lüchtrath ◽  
Peter Mörters

AbstractWe investigate spatial random graphs defined on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point is assigned an independent weight. Given the weight and position of the points, we form an edge between any pair of points independently with a probability depending on the two weights of the points and their distance. Preference is given to short edges and connections to vertices with large weights. We characterize the parameter regime where there is a non-trivial percolation phase transition and show that it depends not only on the power-law exponent of the degree distribution but also on a geometric model parameter. We apply this result to characterize robustness of age-based spatial preferential attachment networks.


2007 ◽  
Vol 18 (10) ◽  
pp. 1591-1607 ◽  
Author(s):  
A. SANTIAGO ◽  
R. M. BENITO

In this paper we provide numerical evidence of the richer behavior of the connectivity degrees in heterogeneous preferential attachment networks in comparison to their homogeneous counterparts. We analyze the degree distribution in the threshold model, a preferential attachment model where the affinity between node states biases the attachment probabilities of links. We show that the degree densities exhibit a power-law multiscaling which points to a signature of heterogeneity in preferential attachment networks. This translates into a power-law scaling in the degree distribution, whose exponent depends on the specific form of heterogeneity in the attachment mechanism.


Sign in / Sign up

Export Citation Format

Share Document