scholarly journals Cell contact and Nf2/Merlin-dependent regulation of TEAD palmitoylation and activity

2019 ◽  
Vol 116 (20) ◽  
pp. 9877-9882 ◽  
Author(s):  
Nam-Gyun Kim ◽  
Barry M. Gumbiner

The Hippo pathway is involved in regulating contact inhibition of proliferation and organ size control and responds to various physical and biochemical stimuli. It is a kinase cascade that negatively regulates the activity of cotranscription factors YAP and TAZ, which interact with DNA binding transcription factors including TEAD and activate the expression of target genes. In this study, we show that the palmitoylation of TEAD, which controls the activity and stability of TEAD proteins, is actively regulated by cell density independent of Lats, the key kinase of the Hippo pathway. The expression of fatty acid synthase and acetyl-CoA carboxylase involved in de novo biosynthesis of palmitate is reduced by cell density in an Nf2/Merlin-dependent manner. Depalmitoylation of TEAD is mediated by depalmitoylases including APT2 and ABHD17A. Palmitoylation-deficient TEAD4 mutant is unstable and degraded by proteasome through the activity of the E3 ubiquitin ligase CHIP. These findings show that TEAD activity is tightly controlled through the regulation of palmitoylation and stability via the orchestration of FASN, depalmitoylases, and E3 ubiquitin ligase in response to cell contact.

2014 ◽  
Vol 25 (12) ◽  
pp. 1854-1866 ◽  
Author(s):  
Andrea Aguilar ◽  
Lars Becker ◽  
Thomas Tedeschi ◽  
Stefan Heller ◽  
Carlo Iomini ◽  
...  

Acetylation of α-tubulin on lysine 40 marks long-lived microtubules in structures such as axons and cilia, and yet the physiological role of α-tubulin K40 acetylation is elusive. Although genetic ablation of the α-tubulin K40 acetyltransferase αTat1 in mice did not lead to detectable phenotypes in the developing animals, contact inhibition of proliferation and cell–substrate adhesion were significantly compromised in cultured αTat1−/− fibroblasts. First, αTat1−/− fibroblasts kept proliferating beyond the confluent monolayer stage. Congruently, αTat1−/− cells failed to activate Hippo signaling in response to increased cell density, and the microtubule association of the Hippo regulator Merlin was disrupted. Second, αTat1−/− cells contained very few focal adhesions, and their ability to adhere to growth surfaces was greatly impaired. Whereas the catalytic activity of αTAT1 was dispensable for monolayer formation, it was necessary for cell adhesion and restrained cell proliferation and activation of the Hippo pathway at elevated cell density. Because α-tubulin K40 acetylation is largely eliminated by deletion of αTAT1, we propose that acetylated microtubules regulate contact inhibition of proliferation through the Hippo pathway.


2019 ◽  
Vol 116 (4) ◽  
pp. 1319-1324 ◽  
Author(s):  
Xing Wang ◽  
Yifei Zhang ◽  
Seth S. Blair

The Drosophila protocadherin Fat controls organ size through the Hippo pathway, but the biochemical links to the Hippo pathway components are still poorly defined. We previously identified Dlish, an SH3 domain protein that physically interacts with Fat and the type XX myosin Dachs, and showed that Fat’s regulation of Dlish levels and activity helps limit Dachs-mediated inhibition of Hippo pathway activity. We here characterize a parallel growth control pathway downstream of Fat and Dlish. Using immunoprecipitation and mass spectrometry to search for Dlish partners, we find that Dlish binds the FERM domain growth repressor Expanded (Ex); Dlish SH3 domains directly bind sites in the Ex C terminus. We further show that, in vivo, Dlish reduces the subapical accumulation of Ex, and that loss of Dlish blocks the destabilization of Ex caused by loss of Fat. Moreover, Dlish can bind the F-box E3 ubiquitin ligase Slimb and promote Slimb-mediated ubiquitination of Expanded in vitro. Both the in vitro and in vivo effects of Dlish on Ex require Slimb, strongly suggesting that Dlish destabilizes Ex by helping recruit Slimb-containing E3 ubiquitin ligase complexes to Ex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abigail C. Neininger ◽  
Xiaozhaun Dai ◽  
Qi Liu ◽  
Dylan T. Burnette

AbstractInducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell–cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.


2015 ◽  
Vol 210 (3) ◽  
pp. 503-515 ◽  
Author(s):  
Nam-Gyun Kim ◽  
Barry M. Gumbiner

The Hippo pathway is involved in the regulation of contact inhibition of proliferation and responses to various physical and chemical stimuli. Recently, several upstream negative regulators of Hippo signaling, including epidermal growth factor receptor ligands and lysophosphatidic acid, have been identified. We show that fibronectin adhesion stimulation of focal adhesion kinase (FAK)-Src signaling is another upstream negative regulator of the Hippo pathway. Inhibition of FAK or Src in MCF-10A cells plated at low cell density prevented the activation of Yes-associated protein (YAP) in a large tumor suppressor homologue (Lats)–dependent manner. Attachment of serum-starved MCF-10A cells to fibronectin, but not poly-d-lysine or laminin, induced YAP nuclear accumulation via the FAK–Src–phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) signaling pathway. Attenuation of FAK, Src, PI3K, or PDK1 activity blocked YAP nuclear accumulation stimulated by adhesion to fibronectin. This negative regulation of the Hippo pathway by fibronectin adhesion signaling can, at least in part, explain the effects of cell spreading on YAP nuclear localization and represents a Lats-dependent component of the response to cell adhesion.


2021 ◽  
Author(s):  
Abigail C. Neininger ◽  
Xiaozhaun Dai ◽  
Qi Liu ◽  
Dylan T. Burnette

ABSTRACTInducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link the Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 611
Author(s):  
Kelly Coffey

Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ. Transcription by their partner transcription factors is inhibited by modulation of YAP/TAZ cellular localisation and protein turnover. Trnascriptional enhanced associate domain (TEAD) transcription factors are their classical transcriptional partner but other transcription factors, including the AR, have been shown to be modulated by YAP/TAZ. In PC, this pathway can be dysregulated by a number of mechanisms, making it attractive for therapeutic intervention. This review looks at each component of the pathway with a focus on findings from the last year and discusses what knowledge can be applied to the field of PC.


Sign in / Sign up

Export Citation Format

Share Document