scholarly journals Evolution of resistance in vitro reveals mechanisms of artemisinin activity inToxoplasma gondii

2019 ◽  
Vol 116 (52) ◽  
pp. 26881-26891 ◽  
Author(s):  
Alex Rosenberg ◽  
Madeline R. Luth ◽  
Elizabeth A. Winzeler ◽  
Michael Behnke ◽  
L. David Sibley

Artemisinins are effective against a variety of parasites and provide the first line of treatment for malaria. Laboratory studies have identified several mechanisms for artemisinin resistance inPlasmodium falciparum, including mutations in Kelch13 that are associated with delayed clearance in some clinical isolates, although other mechanisms are likely involved. To explore other potential mechanisms of resistance in parasites, we took advantage of the genetic tractability ofToxoplasma gondii, a related parasite that shows moderate sensitivity to artemisinin. Resistant populations ofT. gondiiwere selected by culture in increasing concentrations and whole-genome sequencing identified several nonconservative point mutations that emerged in the population and were fixed over time. Genome editing using CRISPR/Cas9 was used to introduce point mutations conferring amino acid changes in a serine protease homologous to DegP and a serine/threonine protein kinase of unknown function. Single and double mutations conferred a competitive advantage over wild-type parasites in the presence of drug, despite not changing EC50values. Additionally, the evolved resistant lines showed dramatic amplification of the mitochondria genome, including genes encoding cytochromeband cytochromecoxidase I. Prior studies in yeast and mammalian tumor cells implicate the mitochondrion as a target of artemisinins, and treatment of wild-type parasites with high concentrations of drug decreased mitochondrial membrane potential, a phenotype that was stably altered in the resistant parasites. These findings extend the repertoire of mutations associated with artemisinin resistance and suggest that the mitochondrion may be an important target of inhibition of resistance inT. gondii.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Barbara H Stokes ◽  
Satish K Dhingra ◽  
Kelly Rubiano ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failure across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


2019 ◽  
Author(s):  
Alex Rozenberg ◽  
Madeline R. Luth ◽  
Elizabeth A. Winzeler ◽  
Michael Behnke ◽  
L. David Sibley

AbstractArtemisinins are effective against a variety of parasites and provide the first line of treatment for malaria. Laboratory studies have identified several mechanisms for artemisinin resistance in Plasmodium falciparum, including mutations in Kelch13 that are associated with delayed clearance in some clinical isolates, although other mechanisms are likely involved. To explore other potential mechanisms of resistance in parasites, we took advantage of the genetic tractability of T. gondii, a related apicomplexan parasite that shows moderate sensitivity to artemisinin. Resistant populations of T. gondii were selected by culture in increasing drug concentrations and whole genome sequencing identified several non-conservative point mutations that emerged in the population and were fixed over time. Genome editing using CRISPR/Cas9 was used to introduce point mutations conferring amino acids changes in a serine protease homologous to DegP and a serine/threonine protein kinase of unknown function. Single and double mutations conferred a competitive advantage over wild type parasites in the presence of drug, despite not changing EC50 values. Additionally, the evolved resistant lines showed dramatic amplification of the mitochondrial genome, including genes encoding cytochrome b and cytochrome oxidase I. Consistent with prior studies in yeast and mammalian tumor cells that implicate the mitochondrion as a target of artemisinins, treatment of wild type parasites with artemisinin decreased mitochondrial membrane potential, and resistant parasites showed altered morphology and decreased membrane potential. These findings extend the repertoire of mutations associated with artemisinin resistance and suggest that the mitochondrion may be an important target of inhibition in T. gondii.SignificanceArtemisinins provide important therapeutic agents for treatment of malaria and have potential for use in other infections and in cancer. Their use is threatened by the potential for resistance development, so understanding their mechanism of action and identifying genetic changes that alter sensitivity are important for improving clinical outcomes. Our findings suggest that mutations in novel targets can contribute to the emergence of parasites with increased tolerance to artemisinin treatment and that such mutations can confer a fitness advantage even in the absence of a notable shift in EC50. Our findings also support the idea that inhibition of mitochondrial function may be an important target in T. gondii, as previously suggested by studies in yeast and human cancer cells.


2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites, driven by K13 mutations, has led to widespread antimalarial treatment failure in Southeast Asia. In Africa, our genotyping of 3,299 isolates confirms the emergence of the K13 R561H variant in Rwanda and reveals the continuing dominance of wild-type K13 across 11 countries. We show that this mutation, along with M579I and C580Y, confers varying degrees of in vitro ART resistance in African parasites. C580Y and M579I cause substantial fitness costs, which may counter-select against their dissemination in high-transmission settings. We also define the impact of multiple K13 mutations on ART resistance and fitness in multiple Southeast Asian strains. ART susceptibility is unaltered upon editing point mutations in ferrodoxin or mdr2, earlier resistance markers. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii348-iii348
Author(s):  
Tina Huang ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
Jin Qi ◽  
Rintaro Hashizume ◽  
...  

Abstract BACKGROUND Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas. This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase), resulting in reduced H3K36me on H3G34V nucleosomes relative to wild-type. This contributes to genomic instability and drives distinct gene expressions associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3G34V on genomic H3K36me3 enrichment in vitro. METHODS Doxycycline-inducible short hairpin RNA (shRNA) against H3F3A was delivered via lentivirus to established H3G34V mutant pediatric glioma cell line KNS42, and H3G34V introduced into H3.3 wild type normal human astrocytes (NHA). Transfections were confirmed by western blot, fluorescent imaging, and flow cytometry, with resulting H3.3WT and H3K36me3 expression determined by western blot. H3.3WT, H3K36me3, and H3G34V ChIP-Seq was performed to evaluate genomic enrichment. RESULTS Complete knockdown of H3G34V was achieved with DOX-induced shRNA, with no change in total H3.3, suggesting disproportionate allelic frequency of genes encoding H3.3 (H3F3A and H3F3B). Modest increase in H3K36me3 occurred after H3F3A-knockdown from KNS42, suggesting H3G34V alone impacts observed H3K36me3 levels. Distinct H3K36me3 genomic enrichment was observed with H3G34V knock-in. CONCLUSIONS We demonstrate that DOX-inducible knockdown of H3F3A in an H3G34V mutant pediatric glioma cells and H3G34V mutation transduction in wild-type astrocytes affects H3K36me3 expression. Further evaluation by ChIP-Seq analysis for restoration of wild-type genomic H3K36me3 enrichment patterns with H3G34V knockdown, and mutant H3K36me3 patterns with H3G34V transduction, is currently underway.


1998 ◽  
Vol 42 (1) ◽  
pp. 164-169 ◽  
Author(s):  
A. Nzila-Mounda ◽  
E. K. Mberu ◽  
C. H. Sibley ◽  
C. V. Plowe ◽  
P. A. Winstanley ◽  
...  

ABSTRACT Sixty-nine Kenyan Plasmodium falciparum field isolates were tested in vitro against pyrimethamine (PM), chlorcycloguanil (CCG), sulfadoxine (SD), and dapsone (DDS), and their dihydrofolate reductase (DHFR) genotypes were determined. The in vitro data show that CCG is more potent than PM and that DDS is more potent than SD. DHFR genotype is correlated with PM and CCG drug response. Isolates can be classified into three distinct groups based on their 50% inhibitory concentrations (IC50s) for PM and CCG (P< 0.01) and their DHFR genotypes. The first group consists of wild-type isolates with mean PM and CCG IC50s of 3.71 ± 6.94 and 0.24 ± 0.21 nM, respectively. The second group includes parasites which all have mutations at codon 108 alone or also at codons 51 or 59 and represents one homogeneous group for which 25- and 6-fold increases in PM and CCG IC50s, respectively, are observed. Parasites with mutations at codons 108, 51, and 59 (triple mutants) form a third distinct group for which nine- and eightfold increases in IC50s, respectively, of PM and CCG compared to the second group are observed. Surprisingly, there is a significant decrease (P < 0.01) of SD and DDS susceptibility in these triple mutants. Our data show that more than 92% of Kenyan field isolates have undergone at least one point mutation associated with a decrease in PM activity. These findings are of great concern because they may indicate imminent PM-SD failure, and there is no affordable antimalarial drug to replace PM-SD (Fansidar).


1998 ◽  
Vol 42 (7) ◽  
pp. 1811-1814 ◽  
Author(s):  
Leonardo K. Basco ◽  
Rachida Tahar ◽  
Pascal Ringwald

ABSTRACT In vitro sulfadoxine and pyrimethamine resistance has been associated with point mutations in the dihydropteroate synthase and dihydrofolate reductase domains, respectively, but the in vivo relevance of these point mutations has not been well established. To analyze the correlation between genotype and phenotype, 10 Cameroonian adult patients were treated with sulfadoxine-pyrimethamine and followed up for 28 days. After losses to follow-up (n = 1) or elimination of DNA samples due to mixed parasite populations with pyrimethamine-sensitive and pyrimethamine-resistant profiles (n = 3), parasite genomic DNA from day 0 blood samples of six patients were analyzed by DNA sequencing. Three patients who were cured had isolates characterized by a wild-type or mutant dihydrofolate reductase gene (with one or two mutations) and a wild-type dihydropteroate synthase gene. Three other patients who failed to respond to sulfadoxine-pyrimethamine treatment carried isolates with triple dihydrofolate reductase gene mutations and either a wild-type or a mutant dihydropteroate synthase gene. Three dihydrofolate reductase gene codons (51, 59, and 108) may be reliable genetic markers that can accurately predict the clinical outcome of sulfadoxine-pyrimethamine treatment in Africa.


1989 ◽  
Vol 9 (10) ◽  
pp. 4467-4472
Author(s):  
M Altmann ◽  
N Sonenberg ◽  
H Trachsel

The gene encoding translation initiation factor 4E (eIF-4E) from Saccharomyces cerevisiae was randomly mutagenized in vitro. The mutagenized gene was reintroduced on a plasmid into S. cerevisiae cells having their only wild-type eIF-4E gene on a plasmid under the control of the regulatable GAL1 promoter. Transcription from the GAL1 promoter (and consequently the production of wild-type eIF-4E) was then shut off by plating these cells on glucose-containing medium. Under these conditions, the phenotype conferred upon the cells by the mutated eIF-4E gene became apparent. Temperature-sensitive S. cerevisiae strains were identified by replica plating. The properties of one strain, 4-2, were further analyzed. Strain 4-2 has two point mutations in the eIF-4E gene. Upon incubation at 37 degrees C, incorporation of [35S]methionine was reduced to 15% of the wild-type level. Cell-free translation systems derived from strain 4-2 were dependent on exogenous eIF-4E for efficient translation of certain mRNAs, and this dependence was enhanced by preincubation of the extract at 37 degrees C. Not all mRNAs tested required exogenous eIF-4E for translation.


2001 ◽  
Vol 82 (4) ◽  
pp. 765-773 ◽  
Author(s):  
Andres Merits ◽  
Lidia Vasiljeva ◽  
Tero Ahola ◽  
Leevi Kääriäinen ◽  
Petri Auvinen

The RNA replicase proteins of Semliki Forest virus (SFV) are translated as a P1234 polyprotein precursor that contains two putative autoproteases. Point mutations introduced into the predicted active sites of both proteases nsP2 (P2) and nsP4 (P4), separately or in combination, completely abolished virus replication in mammalian cells. The effects of these mutations on polyprotein processing were studied by in vitro translation and by expression of wild-type polyproteins P1234, P123, P23, P34 and their mutated counterparts in insect cells using recombinant baculoviruses. A mutation in the catalytic site of the P2 protease, C478A, (P2CA) completely abolished the processing of P12CA34, P12CA3 and P2CA3. Co-expression of P23 and P12CA34 in insect cells resulted in in trans cleavages at the P2/3 and P3/4 sites. Co-expression of P23 and P34 resulted in cleavage at the P3/4 site. In contrast, a construct with a mutation in the active site of the putative P4 protease, D6A, (P1234DA) was processed like the wild-type protein. P34 or its truncated forms were not processed when expressed alone. In insect cells, P4 was rapidly destroyed unless an inhibitor of proteosomal degradation was used. It is concluded that P2 is the only protease needed for the processing of SFV polyprotein P1234. Analysis of the cleavage products revealed that P23 or P2 could not cleave the P1/2 site in trans.


1993 ◽  
Vol 13 (12) ◽  
pp. 7288-7294
Author(s):  
D M Driscoll ◽  
S Lakhe-Reddy ◽  
L M Oleksa ◽  
D Martinez

An RNA editing mechanism modifies apolipoprotein B (apo-B) mRNA in the intestine by converting cytosine at nucleotide (nt) 6666 to uracil. To define the sequence requirements for editing, mutant apo-B RNAs were analyzed for the ability to be edited in vitro by enterocyte extracts. Editing was detected by a sensitive and linear primer extension assay. An upstream region (nt 6648 to 6661) which affected the efficiency of editing was identified. RNAs with mutations in this efficiency sequence were edited at 22 to 160% of wild-type levels. Point mutations in a downstream 11-nt mooring sequence (nt 6671 to 6681) abolished editing, confirming previous studies (R. R. Shah, T. J. Knott, J. E. Legros, N. Navaratnam, J. C. Greeve, and J. Scott, J. Biol. Chem. 266:16301-16304, 1991). The optimal distance between the editing site and the mooring sequence is 5 nt, but a C positioned 8 nt upstream is edited even when nt 6666 contains U. The efficiency and mooring sequences were inserted individually and together adjacent to a heterologous C in apo-B mRNA. The mooring sequence alone induced editing of the C at nt 6597 both in vitro and in transfected rat hepatoma cells. Editing at nt 6597 was specific, was independent of editing at nt 6666, and was stimulated to wild-type levels when the efficiency sequence was also inserted. Introduction of the mooring sequence into a heterologous mRNA, luciferase mRNA, induced editing of an upstream cytidine. Although UV cross-linking studies have previously shown that proteins of 60 to 66 kDa cross-link to apo-B mRNA, these proteins did not cross-link to the luciferase translocation mutants.


1988 ◽  
Vol 8 (6) ◽  
pp. 2523-2535
Author(s):  
J H Hegemann ◽  
J H Shero ◽  
G Cottarel ◽  
P Philippsen ◽  
P Hieter

Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function.


Sign in / Sign up

Export Citation Format

Share Document