scholarly journals Dynamical processes of interstitial diffusion in a two-dimensional colloidal crystal

2020 ◽  
Vol 117 (24) ◽  
pp. 13220-13226
Author(s):  
Sung-Cheol Kim ◽  
Lichao Yu ◽  
Alexandros Pertsinidis ◽  
Xinsheng Sean Ling

In two-dimensional (2D) solids, point defects, i.e., vacancies and interstitials, are bound states of topological defects of edge dislocations and disclinations. They are expected to play an important role in the thermodynamics of the system. Yet very little is known about the detailed dynamical processes of these defects. Two-dimensional colloidal crystals of submicrometer microspheres provide a convenient model solid system in which the microscopic dynamics of these defects can be studied in real time using video microscopy. Here we report a study of the dynamical processes of interstitials in a 2D colloidal crystal. The diffusion constants of both mono- and diinterstitials are measured and found to be significantly larger than those of vacancies. Diinterstitials are clearly slower than monointerstitials. We found that, by plotting the accumulative positions of five- and sevenfold disclinations relative to the center-of-mass position of the defect, a sixfold symmetric pattern emerges for monointerstitials. This is indicative of an equilibrium behavior that satisfies local detailed balance that the lattice remains elastic and can be thermally excited between lattice configurations reversibly. However, for diinterstitials the sixfold symmetry is not observed in the same time window, and the local lattice distortions are too severe to recover quickly. This observation suggests a possible route to creating local melting of a lattice (similarly one can create local melting by creating divacancies). This work opens up an avenue for microscopic studies of the dynamics of melting in colloidal model systems.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


Soft Matter ◽  
2021 ◽  
Author(s):  
Daniel Pearce ◽  
Karsten Kruse

Topological defects are one of the most conspicuous features of liquid crystals. In two dimensional nematics, they have been shown to behave effectively as particles with both, charge and orientation,...


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Pedro Pablo Ortega Palencia ◽  
Ruben Dario Ortiz Ortiz ◽  
Ana Magnolia Marin Ramirez

In this article, a simple expression for the center of mass of a system of material points in a two-dimensional surface of Gaussian constant negative curvature is given. By using the basic techniques of geometry, we obtained an expression in intrinsic coordinates, and we showed how this extends the definition for the Euclidean case. The argument is constructive and serves to define the center of mass of a system of particles on the one-dimensional hyperbolic sphere LR1.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450163 ◽  
Author(s):  
Horace W. Crater ◽  
Luca Lusanna

We make a critical comparison of relativistic and nonrelativistic classical and quantum mechanics of particles in inertial frames as well of the open problems in particle localization at both levels. The solution of the problems of the relativistic center-of-mass, of the clock synchronization convention needed to define relativistic 3-spaces and of the elimination of the relative times in the relativistic bound states leads to a description with a decoupled nonlocal (nonmeasurable) relativistic center-of-mass and with only relative variables for the particles (single particle subsystems do not exist). We analyze the implications for entanglement of this relativistic spatial nonseparability not existing in nonrelativistic entanglement. Then, we try to reconcile the two visions showing that also at the nonrelativistic level in real experiments only relative variables are measured with their directions determined by the effective mean classical trajectories of particle beams present in the experiment. The existing results about the nonrelativistic and relativistic localization of particles and atoms support the view that detectors only identify effective particles following this type of trajectories: these objects are the phenomenological emergent aspect of the notion of particle defined by means of the Fock spaces of quantum field theory.


2008 ◽  
Vol 602 ◽  
pp. 303-326 ◽  
Author(s):  
E. PLAUT ◽  
Y. LEBRANCHU ◽  
R. SIMITEV ◽  
F. H. BUSSE

A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.


2005 ◽  
Vol 72 (3) ◽  
pp. 430-436 ◽  
Author(s):  
E Dupont-Ferrier ◽  
P Mallet ◽  
L Magaud ◽  
J. Y Veuillen
Keyword(s):  

2021 ◽  
Vol 129 (1) ◽  
pp. 51
Author(s):  
С.А. Климин ◽  
П.С. Бердоносов ◽  
Е.С. Кузнецова

Francisites Cu3M(YO3)2O2X (M = Bi or rare earth, Y = Se, Te, X = Br, Cl, I) attract grate attention due to their interesting magnetic properties, such as metamagnetic transitions in relatively weak magnetic fields, magnetic phase transitions including spin reorientation, as well as model systems for studying two-dimensional and frustrated magnetism. In this work, a low-temperature optical spectroscopic study is presented of erbium francisite Cu3Er(SeO3)2O2Cl. The observed splittings of the spectral lines corresponding to the f f transitions in the Kramers Er3+ ion unambiguously indicates the magnetic ordering of the crystal at a temperature TN = 37.5 K. The temperature dependence of the splitting of the main doublet of the erbium ion is determined. The contribution of erbium to the heat capacity and magnetic susceptibility of Cu3Er(SeO3)2O2Cl is calculated.


Sign in / Sign up

Export Citation Format

Share Document