scholarly journals A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation

2020 ◽  
Vol 117 (33) ◽  
pp. 19705-19712
Author(s):  
Maeve A. Kavanagh ◽  
Joshua K. G. Karlsson ◽  
Jonathan D. Colburn ◽  
Laura M. C. Barter ◽  
Ian R. Gould

Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments’ porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1and PheD1as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton–charge transfer states (ChlD1+PheD1−)* and (PD2+PD1−)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.

2017 ◽  
Vol 19 (7) ◽  
pp. 5195-5208 ◽  
Author(s):  
Vladimir I. Novoderezhkin ◽  
Elisabet Romero ◽  
Javier Prior ◽  
Rienk van Grondelle

A mixing of the exciton and charge transfer states promoted by a resonant vibrational quantum allows faster penetration of excitation energy into the primary photoproduct in the photosystem II reaction center both in laser experiment and under natural conditions.


2015 ◽  
Vol 112 (13) ◽  
pp. 3979-3984 ◽  
Author(s):  
Xichen Li ◽  
Per E. M. Siegbahn ◽  
Ulf Ryde

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O–O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2–S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.


2020 ◽  
Vol 117 (23) ◽  
pp. 12624-12635 ◽  
Author(s):  
Mohamed Ibrahim ◽  
Thomas Fransson ◽  
Ruchira Chatterjee ◽  
Mun Hon Cheah ◽  
Rana Hussein ◽  
...  

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2→ S3transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2→ S3transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QAand QB, are observed. At the donor site, tyrosine YZand His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a “water wheel”-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2→ S3transition mirrors the appearance of OXelectron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


1994 ◽  
Vol 1184 (2-3) ◽  
pp. 242-250 ◽  
Author(s):  
J.P.M. Schelvis ◽  
P.I. van Noort ◽  
T.J. Aartsma ◽  
H.J. van Gorkom

2014 ◽  
Vol 176 ◽  
pp. 199-211 ◽  
Author(s):  
Yi-Hsuan Lai ◽  
Masaru Kato ◽  
Dirk Mersch ◽  
Erwin Reisner

This discussion describes a direct comparison of photoelectrochemical (PEC) water oxidation activity between a photosystem II (PSII)-functionalised photoanode and a synthetic nanocomposite photoanode. The semi-biological photoanode is composed of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus on a mesoporous indium tin oxide electrode (mesoITO|PSII). PSII embeds all of the required functionalities for light absorption, charge separation and water oxidation and ITO serves solely as the electron collector. The synthetic photoanode consists of a TiO2 and NiOx coated nanosheet-structured WO3 electrode (nanoWO3|TiO2|NiOx). The composite structure of the synthetic electrode allows mimicry of the functional key features in PSII: visible light is absorbed by WO3, TiO2 serves as a protection and charge separation layer and NiOx serves as the water oxidation electrocatalyst. MesoITO|PSII uses low energy red light, whereas nanoWO3|TiO2|NiOx requires high energy photons of blue-end visible and UV regions to oxidise water. The electrodes have a comparable onset potential at approximately 0.6 V vs. reversible hydrogen electrode (RHE). MesoITO|PSII reaches its saturation photocurrent at 0.84 V vs. RHE, whereas nanoWO3|TiO2|NiOx requires more than 1.34 V vs. RHE. This suggests that mesoITO|PSII suffers from fewer limitations from charge recombination and slow water oxidation catalysis than the synthetic electrode. MesoITO|PSII displays a higher ‘per active’ site activity, but is less photostable and displays a much lower photocurrent per geometrical surface area and incident photon to current conversion efficiency (IPCE) than nanoWO3|TiO2|NiOx.


2017 ◽  
Author(s):  
Tanai Cardona ◽  
Patricia Sánchez-Baracaldo ◽  
A. William Rutherford ◽  
Anthony W. D. Larkum

AbstractPhotosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of Eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale we hypothesize that this early Archean photosystem was capable of water oxidation and had already evolved some level of protection against the formation of reactive oxygen species, which would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


2020 ◽  
Vol 73 (8) ◽  
pp. 669 ◽  
Author(s):  
Jeremy Hall ◽  
Rafael Picorel ◽  
Nicholas Cox ◽  
Robin Purchase ◽  
Elmars Krausz

We apply the differential optical spectroscopy techniques of circular polarisation of luminescence (CPL) and magnetic CPL (MCPL) to the study of isolated reaction centres (RCs) of photosystem II (PS II). The data and subsequent analysis provide insights into aspects of the RC chromophore site energies, exciton couplings, and heterogeneities. CPL measurements are able to identify weak luminescence associated with the unbound chlorophyll-a (Chl-a) present in the sample. The overall sign and magnitude of the CPL observed relates well to the circular dichroism (CD) of the sample. Both CD and CPL are reasonably consistent with modelling of the RC exciton structure. The MCPL observed for the free Chl-a luminescence component in the RC samples is also easily understandable, but the MCPL seen near 680nm at 1.8K is anomalous, appearing to have a narrow, strongly negative component. A negative sign is inconsistent with MCPL of (exciton coupled) Qy states of either Chl-a or pheophytin-a (Pheo-a). We propose that this anomaly may arise as a result of the luminescence from a transient excited state species created following photo-induced charge separation within the RC. A comparison of CD spectra and modelling of RC preparations having a different number of pigments suggests that the non-conservative nature of the CD spectra observed is associated with the ‘special pair’ pigments PD1 and PD2.


Sign in / Sign up

Export Citation Format

Share Document