Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients

2021 ◽  
Vol 118 (43) ◽  
pp. e2002162118
Author(s):  
Xuehua Xu ◽  
Xi Wen ◽  
Amer Moosa ◽  
Smit Bhimani ◽  
Tian Jin

Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3β, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.

2020 ◽  
Author(s):  
Xuehua Xu ◽  
Xi Wen ◽  
Amer Moosa ◽  
Smit Bhimani ◽  
Tian Jin

AbstractNeutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that, in human neutrophils, Calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd) exhibit chemoattractant-induced non-adaptive Ras activation; significantly increased phosphorylation of AKT, GSK3α/3β, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher concentration range of chemoattractant gradients.Significance StatementNeutrophils provide first-line host defense by migrating through chemoattractant gradients to the sites of inflammation. Inappropriate recruitment and mis-regulated activation of neutrophils contribute to tissue damage and cause autoimmune and inflammatory disease. One fascinating feature of chemotactic neutrophils is their ability to migrate through an enormous concentration range of chemoattractant gradients (10−9 ∼ 10−5 M) through “adaptation,” in which cells no longer respond to the present stimuli, but remain sensitive to stronger stimuli. The inhibitory mechanism largely remains elusive, although many molecules of the excitatory signaling pathway have been identified. Our study reveals, for the first time, that the inhibitory component, CAPRI, is essential for both the sensitivity and the GPCR-mediated adaptation of human neutrophils.


2006 ◽  
Vol 290 (3) ◽  
pp. C719-C727 ◽  
Author(s):  
Frank C. Chen ◽  
Ozgur Ogut

The severity and duration of ischemia-reperfusion injury is hypothesized to play an important role in the ability of the heart subsequently to recover contractility. Permeabilized trabeculae were prepared from a rat model of ischemia-reperfusion injury to examine the impact on force generation. Compared with the control perfused condition, the maximum force (Fmax) per cross-sectional area and the rate of tension redevelopment of Ca2+-activated trabeculae fell by 71% and 44%, respectively, during ischemia despite the availability of a high concentration of ATP. The reduction in Fmax with ischemia was accompanied by a decline in fiber stiffness, implying a drop in the absolute number of attached cross bridges. However, the declines during ischemia were largely recovered after reperfusion, leading to the hypothesis that intrinsic, reversible posttranslational modifications to proteins of the contractile filaments occur during ischemia-reperfusion injury. Examination of thin-filament proteins from ischemic or ischemia-reperfused hearts did not reveal proteolysis of troponin I or T. However, actin was found to be glutathionylated with ischemia. Light-scattering experiments demonstrated that glutathionylated G-actin did not polymerize as efficiently as native G-actin. Although tropomyosin accelerated the time course of native and glutathionylated G-actin polymerization, the polymerization of glutathionylated G-actin still lagged native G-actin at all concentrations of tropomyosin tested. Furthermore, cosedimentation experiments demonstrated that tropomyosin bound glutathionylated F-actin with significantly reduced cooperativity. Therefore, glutathionylated actin may be a novel contributor to the diverse set of posttranslational modifications that define the function of the contractile filaments during ischemia-reperfusion injury.


1994 ◽  
Vol 102 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Johannes Norgauer ◽  
Jean Krutmann ◽  
Gustav J. Dobos ◽  
Alexis E. Traynor-Kaplan ◽  
Zenaida G. Oades ◽  
...  

1990 ◽  
Vol 96 (1) ◽  
pp. 99-106
Author(s):  
H.U. Keller ◽  
V. Niggli ◽  
A. Zimmermann ◽  
R. Portmann

The present study demonstrates new properties of H-7. The protein kinase inhibitor H-7 is a potent activator of several neutrophil functions. Stimulation of initially spherical nonmotile neutrophils elicits vigorous shape changes within a few seconds, increases in cytoskeletal actin, altered F-actin distribution, increased adhesiveness and a relatively small increase in pinocytic activity. H-7 has also chemokinetic activities. Depending on the experimental condition, H-7 may elicit or inhibit neutrophil locomotion. It failed to induce chemotaxis. Thus, the response pattern elicited by H-7 is different from that of other leukocyte activators such as chemotactic peptides, PMA or diacylglycerols. The finding that H-7 can elicit shape changes, actin polymerization and pinocytosis suggests that these events can occur without activation of protein kinase C (PKC). PMA-induced shape changes and stimulation of pinocytosis were not inhibited by H-7.


1992 ◽  
Vol 282 (2) ◽  
pp. 393-397 ◽  
Author(s):  
J Norgauer ◽  
M Eberle ◽  
H D Lemke ◽  
K Aktories

In human neutrophils, mastoparan induced rapid F-actin polymerization which was followed by a slow and sustained depolymerization to below the initial F-actin content. Incubation of neutrophils with pertussis toxin inhibited mastoparan-stimulated actin polymerization; however it did not prevent sustained depolymerization of F-actin. Analyses of phospholipids performed in parallel revealed that mastoparan stimulated rapid formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and consumption of phosphatidylinositol 4,5-bisphosphate (PIP2). Pertussis toxin treatment blocked mastoparan-induced formation of PIP3. Furthermore, mastoparan stimulated the release of N-acetylglucosaminidase from primary granules. Cytochalasin B enhanced mastoparan-stimulated secretion. Mastoparan triggered superoxide radical production in a cytochalasin B-sensitive manner and induced complement type 3 receptor (CR3) up-regulation.


2008 ◽  
Vol 295 (5) ◽  
pp. C1354-C1365 ◽  
Author(s):  
Troy Mitchell ◽  
Andrea Lo ◽  
Michael R. Logan ◽  
Paige Lacy ◽  
Gary Eitzen

The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (≤10 μM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca2+ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca2+ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.


1996 ◽  
Vol 199 (4) ◽  
pp. 741-747
Author(s):  
M U Ehrengruber ◽  
D A Deranleau ◽  
T D Coates

When neutrophil leukocytes are stimulated by chemotactic factors or by substratum contact, they change their shape. Shape changes are a prerequisite for cellular migration and typically involve the extrusion of thin, veil-like lamellipods and the development of morphological polarity. Stimulation also leads to changes in the neutrophil content of filamentous actin (F-actin), which is the major cytoskeletal component. Suspensions of human neutrophils stimulated with chemoattractants exhibit sinusoidal light-scattering oscillations with a period of approximately 8 s at 37 degrees C. These oscillations arise from periodic fluctuations in the cell body size caused by lamellipod extension and retraction cycles. The light-scattering oscillations are paralleled by corresponding oscillations in F-actin content. This raises the interesting possibility that cyclic actin polymerization constitutes the driving force for shape oscillations of suspended neutrophils. Similar periodic shape changes are present in neutrophils crawling on a surface, suggesting that shape oscillations are important for neutrophil motion. This review summarizes our present knowledge about shape oscillations in suspended and crawling neutrophils and discusses a possible role for these oscillations in neutrophil motility.


Author(s):  
Masaki Okuyama ◽  
Yoshihiko Ohta ◽  
Jun-ichi Kambayashi ◽  
Morito Monden

2017 ◽  
Vol 216 (6) ◽  
pp. 1673-1688 ◽  
Author(s):  
Lillian K. Fritz-Laylin ◽  
Samuel J. Lord ◽  
R. Dyche Mullins

Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.


1989 ◽  
Vol 109 (3) ◽  
pp. 1133-1140 ◽  
Author(s):  
J Norgauer ◽  
I Just ◽  
K Aktories ◽  
L A Sklar

Stimulation of human neutrophils with the chemotactic N-formyl peptide causes production of oxygen radicals and conversion of monomeric actin (G-actin) to polymeric actin (F-actin). The effects of the binary botulinum C2 toxin on the amount of F-actin and on neutrophil cell responses were studied. Two different methods for analyzing the actin response were used in formyl peptide-stimulated cells: staining of F-actin with rhodamine-phalloidin and a transient right angle light scatter. Preincubation of neutrophils with 400 ng/ml component I and 1,600 ng/ml component II of botulinum C2 toxin for 30 min almost completely inhibited the formyl peptide-stimulated polymerization of G-actin and at the same time decreased the amount of F-actin in unstimulated neutrophils by an average of approximately 30%. Botulinum C2 toxin preincubation for 60 min destroyed approximately 75% of the F-actin in unstimulated neutrophils. Right angle light scatter analysis showed that control neutrophils exhibited the transient response characteristic of actin polymerization; however, after botulinum C2 toxin treatment, degranulation was detected. Single components of the binary botulinum C2 toxin were without effect on the actin polymerization response. Fluorescence flow cytometry and fluorospectrometric binding studies showed little alteration in N-formyl peptide binding or dissociation dynamics in the toxin-treated cells. However, endocytosis of the fluorescent N-formyl peptide ligand-receptor complex was slower but still possible in degranulating neutrophils treated with botulinum C2 toxin for 60 min. The half-time of endocytosis, estimated from initial rates, was 4 and 8 min in control and botulinum C2 toxin-treated neutrophils, respectively.


Sign in / Sign up

Export Citation Format

Share Document