scholarly journals A membrane-depolarizing toxin substrate of theStaphylococcus aureustype VII secretion system mediates intraspecies competition

2020 ◽  
Vol 117 (34) ◽  
pp. 20836-20847 ◽  
Author(s):  
Fatima R. Ulhuq ◽  
Margarida C. Gomes ◽  
Gina M. Duggan ◽  
Manman Guo ◽  
Chriselle Mendonca ◽  
...  

The type VII protein secretion system (T7SS) is conserved acrossStaphylococcus aureusstrains and plays important roles in virulence and interbacterial competition. To date, only one T7SS substrate protein, encoded in a subset ofS. aureusgenomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across allS. aureusstrains as well as inListeriaand Enterococci. Heterologous expression of TspA fromS. aureusstrain RN6390 indicates its C-terminal domain is toxic when targeted to theEscherichia coliperiplasm and that it depolarizes the cytoplasmic membrane. The membrane-depolarizing activity is alleviated by coproduction of the membrane-bound TsaI immunity protein, which is encoded adjacent totspAon theS. aureuschromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion oftspAleads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic andS. aureusstrains encode multipletsaIhomologs at thetspAlocus, suggestive of additional roles in intraspecies competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologs.

2018 ◽  
Author(s):  
Franziska Jäger ◽  
Holger Kneuper ◽  
Tracy Palmer

ABSTRACTThe Type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1-EssC4) that display sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a strain deleted for essC1 and that they are able to mediate secretion of EsxA, an essential component of the secretion apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is encoded only in essC1-specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a model where the C-terminal domain of EssC interacts with substrate proteins whereas EsxA interacts elsewhere.


2018 ◽  
Author(s):  
Fatima R. Ulhuq ◽  
Margarida C. Gomes ◽  
Gina Duggan ◽  
Manman Guo ◽  
Chriselle Mendonca ◽  
...  

AbstractThe type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date only one T7SS substrate protein, encoded in a subset of S. aureus genomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across all S. aureus strains as well as in Listeria and Enterococci. Heterologous expression of TspA from S. aureus strain RN6390 indicates its C-terminal domain is toxic when targeted to the Escherichia coli periplasm and that it depolarizes the cytoplasmic membrane. The membrane depolarizing activity is alleviated by co-production of the membrane-bound TsaI immunity protein, which is encoded adjacent to tspA on the S. aureus chromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion of tspA leads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologues at the tspA locus, suggestive of additional roles in intra-species competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologues.Significance statementStaphylococcus aureus, a human commensal organism that asymptomatically colonizes the nares, is capable of causing serious disease following breach of the mucosal barrier. S. aureus strains encode a Type VII secretion system (T7SS) that is required for virulence in mouse infection models, and some strains also secrete a nuclease toxin by this route that has antibacterial activity. Here we identify TspA, widely found in Staphylococci and other pathogenic bacteria, as a T7 substrate. We show that TspA has membrane-depolarizing activity and that S. aureus uses TspA to inhibit the growth of a bacterial competitor in vivo.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Qian Liu ◽  
Mo Hu ◽  
Won-Sik Yeo ◽  
Lei He ◽  
Tianming Li ◽  
...  

Abstract In the Gram-positive pathogen Staphylococcus aureus, the membrane-bound ATP-dependent metalloprotease FtsH plays a critical role in resistance to various stressors. However, the molecular mechanism of the FtsH functions is not known. Here, we identified core FtsH target proteins in S. aureus. In the strains Newman and USA300, the abundance of 33 proteins were altered in both strains, of which 11 were identified as core FtsH substrate protein candidates. In the strain Newman and some other S. aureus strains, the sensor histidine kinase SaeS has an L18P (T53C in saeS) substitution, which transformed the protein into an FtsH substrate. Due to the increase of SaeS L18P in the ftsH mutant, Eap, a sae-regulon protein, was also increased in abundance, causing the Newman-specific cell-aggregation phenotype. Regardless of the strain background, however, the ftsH mutants showed lower virulence and survival in a murine infection model. Our study illustrates the elasticity of the bacterial regulatory network, which can be rewired by a single substitution mutation.


2020 ◽  
Vol 295 (8) ◽  
pp. 2259-2269 ◽  
Author(s):  
Michael C. Jaskolka ◽  
Patricia M. Kane

The yeast vacuolar H+-ATPase (V-ATPase) of budding yeast (Saccharomyces cerevisiae) is regulated by reversible disassembly. Disassembly inhibits V-ATPase activity under low-glucose conditions by releasing peripheral V1 subcomplexes from membrane-bound Vo subcomplexes. V-ATPase reassembly and reactivation requires intervention of the conserved regulator of H+-ATPase of vacuoles and endosomes (RAVE) complex, which binds to cytosolic V1 subcomplexes and assists reassembly with integral membrane Vo complexes. Consistent with its role, the RAVE complex itself is reversibly recruited to the vacuolar membrane by glucose, but the requirements for its recruitment are not understood. We demonstrate here that RAVE recruitment to the membrane does not require an interaction with V1. Glucose-dependent RAVE localization to the vacuolar membrane required only intact Vo complexes containing the Vph1 subunit, suggesting that the RAVE-Vo interaction is glucose-dependent. We identified a short conserved sequence in the center of the RAVE subunit Rav1 that is essential for the interaction with Vph1 in vivo and in vitro. Mutations in this region resulted in the temperature- and pH-dependent growth phenotype characteristic of ravΔ mutants. However, this region did not account for glucose sensitivity of the Rav1-Vph1 interaction. We quantitated glucose-dependent localization of a GFP-tagged RAVE subunit to the vacuolar membrane in several mutants previously implicated in altering V-ATPase assembly state or glucose-induced assembly. RAVE localization did not correlate with V-ATPase assembly levels reported previously in these mutants, highlighting both the catalytic nature of RAVE's role in V-ATPase assembly and the likelihood of glucose signaling to RAVE independently of V1.


2008 ◽  
Vol 76 (5) ◽  
pp. 1979-1991 ◽  
Author(s):  
Daniel F. Aubert ◽  
Ronald S. Flannagan ◽  
Miguel A. Valvano

ABSTRACT Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.


1977 ◽  
Vol 37 (01) ◽  
pp. 073-080 ◽  
Author(s):  
Knut Gjesdal ◽  
Duncan S. Pepper

SummaryHuman platelet factor 4 (PF-4) showed a reaction of complete identity with PF-4 from Macaca mulatta when tested against rabbit anti-human-PF-4. Such immunoglobulin was used for quantitative precipitation of in vivo labelled PF-4 in monkey serum. The results suggest that the active protein had an intra-platelet half-life of about 21 hours. In vitro 125I-labelled human PF-4 was injected intravenously into two monkeys and isolated by immuno-precipita-tion from platelet-poor plasma and from platelets disrupted after gel-filtration. Plasma PF-4 was found to have a half-life of 7 to 11 hours. Some of the labelled PF-4 was associated with platelets and this fraction had a rapid initial disappearance rate and a subsequent half-life close to that of plasma PF-4. The results are compatible with the hypothesis that granular PF-4 belongs to a separate compartment, whereas membrane-bound PF-4 and plasma PF-4 may interchange.


Sign in / Sign up

Export Citation Format

Share Document