scholarly journals The critical role of cloud–infrared radiation feedback in tropical cyclone development

2020 ◽  
Vol 117 (45) ◽  
pp. 27884-27892
Author(s):  
James H. Ruppert ◽  
Allison A. Wing ◽  
Xiaodong Tang ◽  
Erika L. Duran

The tall clouds that comprise tropical storms, hurricanes, and typhoons—or more generally, tropical cyclones (TCs)—are highly effective at trapping the infrared radiation welling up from the surface. This cloud–infrared radiation feedback, referred to as the “cloud greenhouse effect,” locally warms the lower–middle troposphere relative to a TC’s surroundings through all stages of its life cycle. Here, we show that this effect is essential to promoting and accelerating TC development in the context of two archetypal storms—Super Typhoon Haiyan (2013) and Hurricane Maria (2017). Namely, this feedback strengthens the thermally direct transverse circulation of the developing storm, in turn both promoting saturation within its core and accelerating the spin-up of its surface tangential circulation through angular momentum convergence. This feedback therefore shortens the storm’s gestation period prior to its rapid intensification into a strong hurricane or typhoon. Further research into this subject holds the potential for key progress in TC prediction, which remains a critical societal challenge.

2020 ◽  
Vol 77 (9) ◽  
pp. 3139-3160
Author(s):  
Chieh-Jen Cheng ◽  
Chun-Chieh Wu

Abstract This study examines the role of surface heat fluxes, particularly in relation to the wind-induced surface heat exchange (WISHE) mechanism, in the rapid intensification (RI) of tropical cyclones (TCs). Sensitivity experiments with capped surface fluxes and thus reduced WISHE exhibit delayed RI and weaker peak intensity, while WISHE could affect the evolutions of TCs both before and after the onset of RI. Before RI, more WISHE leads to faster increase of equivalent potential temperature in the lower levels, resulting in more active and stronger convection. In addition, TCs in experiments with more WISHE reach a certain strength earlier, before the onset of RI. During the RI period, more surface heat fluxes could provide convective instability in the lower levels, and cause a consequent development in the convective activity. More efficient intensification in a TC is found with higher surface heat fluxes and larger inertial stability, leading to a stronger peak intensity, more significant and deeper warm core in TC center, and the axisymmetrization of convection in the higher levels. In both stages, different levels of WISHE alter the thermodynamic environment and convective-scale processes. In all, this study supports the crucial role of WISHE in affecting TC intensification rate for TCs with RI.


2007 ◽  
Vol 64 (10) ◽  
pp. 3562-3578 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Chia-Ying Lee ◽  
I-I. Lin

Abstract The rapid intensification of Hurricane Katrina followed by the devastation of the U.S. Gulf States highlights the critical role played by an upper-oceanic thermal structure (such as the ocean eddy or Loop Current) in affecting the development of tropical cyclones. In this paper, the impact of the ocean eddy on tropical cyclone intensity is investigated using a simple hurricane–ocean coupled model. Numerical experiments with different oceanic thermal structures are designed to elucidate the responses of tropical cyclones to the ocean eddy and the effects of tropical cyclones on the ocean. This simple model shows that rapid intensification occurs as a storm encounters the ocean eddy because of enhanced heat flux. While strong winds usually cause strong mixing in the mixed layer and thus cool down the sea surface, negative feedback to the storm intensity of this kind is limited by the presence of a warm ocean eddy, which provides an insulating effect against the storm-induced mixing and cooling. Two eddy factors, FEDDY-S and FEDDY-T, are defined to evaluate the effect of the eddy on tropical cyclone intensity. The efficiency of the eddy feedback effect depends on both the oceanic structure and other environmental parameters, including properties of the tropical cyclone. Analysis of the functionality of FEDDY-T shows that the mixed layer depth associated with either the large-scale ocean or the eddy is the most important factor in determining the magnitude of eddy feedback effects. Next to them are the storm’s translation speed and the ambient relative humidity.


Author(s):  
Ali Tamizi ◽  
Jose-Henrique Alves ◽  
Ian R. Young

AbstractA series of numerical experiments with the WAVEWATCH III spectral wave model are used to investigate the physics of wave evolution in tropical cyclones. Buoy observations show that tropical cyclone wave spectra are directionally skewed with a continuum of energy between locally generated wind-sea and remotely generated waves. These systems are often separated by more than 900. The model spectra are consistent with the observed buoy data and are shown to be governed by nonlinear wave-wave interactions which result in a cascade of energy from the wind-sea to the remotely generated spectral peak. The peak waves act in a “parasitic” manner taking energy from the wind-sea to maintain their growth. The critical role of nonlinear processes explains why one-dimensional tropical cyclone spectra have characteristics very similar to fetch-limited waves, even though the generation system is far more complex. The results also provide strong validation of the critical role nonlinear interactions play in wind-wave evolution.


2014 ◽  
Vol 120 (3-4) ◽  
pp. 797-810 ◽  
Author(s):  
M. S. Girishkumar ◽  
K. Suprit ◽  
S. Vishnu ◽  
V. P. Thanga Prakash ◽  
M. Ravichandran

Author(s):  
Xiaomin Chen ◽  
Jian-Feng Gu ◽  
Jun A. Zhang ◽  
Frank D. Marks ◽  
Robert F. Rogers ◽  
...  

AbstractThis study investigates the precipitation symmetrization preceding rapid intensification (RI) of tropical cyclones (TCs) experiencing vertical wind shear by analyzing numerical simulations of Typhoon Mujigae (2015) with warm (CTL) and relatively cool (S1) sea surface temperatures (SSTs). A novel finding is that precipitation symmetrization is maintained by the continuous development of deep convection along the inward flank of a convective precipitation shield (CPS), especially in the downwind part. Beneath the CPS, downdrafts flush the boundary layer with low-entropy parcels. These low-entropy parcels do not necessarily weaken the TCs; instead, they are “recycled” in the TC circulation, gradually recovered by positive enthalpy fluxes, and develop into convection during their propagation toward a downshear convergence zone. Along-trajectory vertical momentum budget analyses reveal the predominant role of buoyancy acceleration in the convective development in both experiments. The boundary layer recovery is more efficient for warmer SST, and the stronger buoyancy acceleration accounts for the higher probability of these parcels developing into deep convection in the downwind part of the CPS, which helps maintain the precipitation symmetrization in CTL. In contrast, less efficient boundary layer recovery and less upshear deep convection hinder the precipitation symmetrization in S1. These findings highlight the key role of boundary layer recovery in regulating the precipitation symmetrization and upshear deep convection, which further accounts for an earlier RI onset timing of the CTL TC. The inward rebuilding pathway also illuminates why deep convection is preferentially located inside the radius of maximum wind of sheared TCs undergoing RI.


2021 ◽  
Author(s):  
James Ruppert ◽  
Allison Wing ◽  
Xiaodong Tang ◽  
Erika Duran

<p>The deep convective clouds of developing tropical cyclones (TCs) are highly effective at trapping the infrared (or longwave) radiation welling up from the surface. This “cloud greenhouse effect” locally warms the lower–mid-troposphere relative to the TC’s surroundings – an effect that manifests in all stages of the TC lifecycle. While idealized studies suggest the importance of this feedback for TC formation, this issue has remained unexplored for TCs in nature, where non-zero background flow, wind shear, and synoptic-scale variability are known to greatly constrain TC development.</p><p>To address this gap, we examine the potential role of this cloud–infrared (or longwave) radiation feedback in the context of two archetypal storms: Super Typhoon Haiyan (2013) and Hurricane Maria (2017). We conduct a set of numerical model experiments for both storms with a convection-resolving model (WRF-ARW) from the very early stages of TC development. We examine sensitivity experiments wherein this cloud–radiation feedback is removed at various lead-times prior to TC genesis and the onset of rapid intensification (RI). In both storms, removing this cloud–radiation feedback at a lead-time of ~1 day or less leads to delayed and/or weaker intensification than in the control case. When this feedback is removed with a lead-time of two days or longer, however, the storms altogether fail to development and intensify. This local cloud greenhouse effect strengthens the thermally direct transverse circulation of the incipient storm, in turn both promoting saturation within its core and accelerating the spin-up of its surface tangential circulation via angular momentum convergence. These findings indicate that the cloud greenhouse effect plays a critical role in accelerating and promoting TC development in nature. Progress in the prediction of TC formation and intensification has been very limited in recent decades. Cloud–radiation feedback represents a large source of uncertainty in models, which hence manifests as uncertainty in the prediction of TC development. Our findings highlight the pressing need to better constrain this feedback in models. Doing so holds promise for advancing our ability to forecast TCs.</p>


2008 ◽  
Vol 15 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Amy Philofsky

AbstractRecent prevalence estimates for autism have been alarming as a function of the notable increase. Speech-language pathologists play a critical role in screening, assessment and intervention for children with autism. This article reviews signs that may be indicative of autism at different stages of language development, and discusses the importance of several psychometric properties—sensitivity and specificity—in utilizing screening measures for children with autism. Critical components of assessment for children with autism are reviewed. This article concludes with examples of intervention targets for children with ASD at various levels of language development.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document