scholarly journals Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease

2020 ◽  
Vol 117 (41) ◽  
pp. 25455-25463 ◽  
Author(s):  
Kristin L. Zuromski ◽  
Robert T. Sauer ◽  
Tania A. Baker

ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.

1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


2000 ◽  
Vol 352 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Sang Yeul HAN ◽  
Dong Yoon PARK ◽  
Sang Dai PARK ◽  
Seung Hwan HONG

In this study we show the interaction of N-ethylmaleimide-sensitive fusion protein (NSF) with a small GTP-binding protein, Rab6. NSF is an ATPase involved in the vesicular transport within eukaryotic cells. Using the yeast two-hybrid system, we have isolated new NSF-binding proteins from the rat lung cDNA library. One of them was Rab6, which is involved in the vesicular transport within the Golgi and trans-Golgi network as a Ras-like GTPase. We demonstrated that the N-terminal domain of NSF interacted with the C-terminal domain of Rab6, and these proteins were co-immunoprecipitated from the rat brain extract. This interaction was maintained preferentially in the presence of hydrolysable ATP. Recombinant NSF-His6 can also bind to C-terminal Rab6–glutathione S-transferase under the conditions to allow the ATP hydrolysis. Surprisingly, Rab6 stimulates the ATPase activity of NSF by approx. 2-fold as does α-soluble NSF attachment protein receptor. Anti-Rab6 polyclonal antibodies significantly inhibited the Rab6-stimulated ATPase activity of NSF. Furthermore, we found that Rab3 and Rab4 can also associate with NSF and stimulate its ATPase activity. Taken together, we propose a model in which Rab can form an ATP hydrolysis-regulated complex with NSF, and function as a signalling molecule to deliver the signal of vesicle fusion through the interaction with NSF.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xue Fei ◽  
Tristan A Bell ◽  
Simon Jenni ◽  
Benjamin M Stinson ◽  
Tania A Baker ◽  
...  

ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.


2021 ◽  
Author(s):  
man zhou

SMC (structural maintenance of chromosomes) complexes share conserved architectures and function in chromosome maintenance via an unknown mechanism. Here we have used single-molecule techniques to study MukBEF, the SMC complex in Escherichia coli. Real-time movies show MukB alone can compact DNA and ATP inhibits DNA compaction by MukB. We observed that DNA unidirectionally slides through MukB, potentially by a ratchet mechanism, and the sliding speed depends on the elastic energy stored in the DNA. MukE, MukF and ATP binding stabilize MukB and DNA interaction, and ATP hydrolysis regulates the loading/unloading of MukBEF from DNA. Our data suggests a new model for how MukBEF organizes the bacterial chromosome in vivo; and this model will be relevant for other SMC proteins.


2020 ◽  
Vol 8 ◽  
Author(s):  
Chae-Yeon Kwon ◽  
Jae-Yeop Jeong ◽  
Juchan Yang ◽  
Yoo Sei Park ◽  
Jaehoon Jeong ◽  
...  

Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method, with the composition being controlled by altering the precursor ratio to 1:1, 1:2, and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure, morphology, and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics, which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore, single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition, it was possible to mass produce the uniform, highly active electrocatalyst for such applications through the co-precipitation method.


2018 ◽  
Vol 14 (8) ◽  
pp. e1007232 ◽  
Author(s):  
Fei Yuan ◽  
Zeng-Qiang Gao ◽  
Vladimir Majerciak ◽  
Lei Bai ◽  
Meng-Lu Hu ◽  
...  

FEBS Journal ◽  
2015 ◽  
Vol 282 (19) ◽  
pp. 3841-3859 ◽  
Author(s):  
Meghna Gupta ◽  
Mohit Mazumder ◽  
Karthik Dhatchinamoorthy ◽  
Macmillan Nongkhlaw ◽  
Dominic Thangminlen Haokip ◽  
...  

2014 ◽  
Vol 25 (6) ◽  
pp. 753-762 ◽  
Author(s):  
Dana M. Alessi Wolken ◽  
Joseph McInnes ◽  
Liza A. Pon

Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.


Sign in / Sign up

Export Citation Format

Share Document