scholarly journals The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function

2018 ◽  
Vol 14 (8) ◽  
pp. e1007232 ◽  
Author(s):  
Fei Yuan ◽  
Zeng-Qiang Gao ◽  
Vladimir Majerciak ◽  
Lei Bai ◽  
Meng-Lu Hu ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pablo Perez-Garcia ◽  
Stefanie Kobus ◽  
Christoph G. W. Gertzen ◽  
Astrid Hoeppner ◽  
Nicholas Holzscheck ◽  
...  

AbstractThe metallo-β-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-β-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from β-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-β-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-β-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.


2012 ◽  
Vol 56 (4) ◽  
pp. 1769-1773 ◽  
Author(s):  
Jorgelina Morán-Barrio ◽  
María-Natalia Lisa ◽  
Alejandro J. Vila

ABSTRACTMetallo-β-lactamases (MβLs) represent one of the main mechanisms of bacterial resistance against β-lactam antibiotics. The elucidation of their mechanism has been limited mostly by the structural diversity among their active sites. All MβLs structurally characterized so far present a Cys or a Ser residue at position 221, which is critical for catalysis. GOB lactamases stand as an exception within this picture, possessing a Met residue in this location. We studied different mutants in this position, and we show that Met221 is essential for protein stability, most likely due to its involvement in a hydrophobic core. In contrast to other known MβLs, residue 221 is not involved in metal binding or in catalysis in GOB enzymes, further highlighting the structural diversity of MβLs. We also demonstrate the usefulness of protein periplasmic profiles to assess the contribution of protein stability to antibiotic resistance.


Blood ◽  
2017 ◽  
Vol 129 (20) ◽  
pp. 2737-2748 ◽  
Author(s):  
Qingrong Huang ◽  
Shan He ◽  
Yuanyuan Tian ◽  
Yuting Gu ◽  
Pan Chen ◽  
...  

Key Points Ezh2 requires Hsp90 to maintain Ezh2 protein stability and function in alloreactive T cells. Pharmacological inhibition of Hsp90 destabilizes Ezh2 protein in alloreactive T cells and reduces GVHD but preserves graft-versus-leukemia effects.


2015 ◽  
Vol 1125 ◽  
pp. 60-63
Author(s):  
Chutharat Paikaew ◽  
Juthamas Inthanont ◽  
Adisak Punyanut ◽  
Ekachai Hoonnivathana ◽  
Pichet Limsuwan ◽  
...  

The purpose of this research was to investigate physical properties, configuration and color of topaz. Topazes were irradiated with electron beam linear accelerator at different dose from 40 to 180 MGy. The color of topaz was analyzed by UV-vis and it was shown that the color of topaz was becoming strong color with increased electron beam dose. Crystal structure and function group of topaz were characterized by X- ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The results showed that the topaz has orthorhombic structure and no other crystalline. After irradiated, topaz released OH indicating higher crystallinity of topaz and this was confirmed with the results of electron spin resonance (ESR). Electron beam dose response of topaz was investigated. ESR results showed that the Al3+ ion was substituted in Si4+ site and Ti3+ impurity in Al4+ site and this result corresponds to the results of FTIR. The experiment result indicated that electron beam could be making defect on crystal structure and color enhancement of topaz.


Sign in / Sign up

Export Citation Format

Share Document