scholarly journals Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate

2021 ◽  
Vol 118 (8) ◽  
pp. e2016950118 ◽  
Author(s):  
Tyler M. Lu ◽  
Sean Houghton ◽  
Tarig Magdeldin ◽  
José Gabriel Barcia Durán ◽  
Andrew P. Minotti ◽  
...  

Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood–brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.

2007 ◽  
Vol 28 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Anthony R Calabria ◽  
Eric V Shusta

The blood—brain barrier (BBB) is composed of uniquely differentiated brain microvascular endothelial cells (BMEC). Often, it is of interest to replicate these attributes in the form of an in vitro model, and such models are widely used in the research community. However, the BMEC used to create in vitro BBB models de-differentiate in culture and lose many specialized characteristics. These changes are poorly understood at a molecular level, and little is known regarding the consequences of removing BMEC from their local in vivo microenvironment. To address these issues, suppression subtractive hybridization (SSH) was used to identify 25 gene transcripts that were differentially expressed between in vivo and in vitro BMEC. Genes affected included those involved in angiogenesis, transport and neurogenesis, and real-time quantitative polymerase chain reaction (qPCR) verified transcripts were primarily and significantly downregulated. Since this quantitative gene panel represented those BMEC characteristics lost upon culture, we used it to assess how culture manipulation, specifically BMEC purification and barrier induction by hydrocortisone, influenced the quality of in vitro models. Puromycin purification of BMEC elicited minimal differences compared with untreated BMEC, as assessed by qPCR. In contrast, qPCR-based gene panel analysis after induction with hydrocortisone indicated a modest shift of 10 of the 23 genes toward a more ‘ in vivo-like’ gene expression profile, which correlated with improved barrier phenotype. Genomic analysis of BMEC de-differentiation in culture has thus yielded a functionally diverse set of genes useful for comparing the in vitro and in vivo BBB.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 268 ◽  
Author(s):  
Amjad ◽  
Yang ◽  
Li ◽  
Fu ◽  
Yang ◽  
...  

Meningitic Escherichia coli can traverse the host’s blood–brain barrier (BBB) and induce severe neuroinflammatory damage to the central nervous system (CNS). During this process, the host needs to reasonably balance the battle between bacteria and brain microvascular endothelial cells (BMECs) to minimize inflammatory damage, but this quenching of neuroinflammatory responses at the BBB is unclear. MicroRNAs (miRNAs) are widely recognized as key negative regulators in many pathophysiological processes, including inflammatory responses. Our previous transcriptome sequencing revealed numbers of differential miRNAs in BMECs upon meningitic E. coli infection; we next sought to explore whether and how these miRNAs worked to modulate neuroinflammatory responses at meningitic E. coli entry of the BBB. Here, we demonstrated in vivo and in vitro that meningitic E. coli infection of BMECs significantly downregulated miR-19b-3p, which led to attenuated production of proinflammatory cytokines and chemokines via increasing the expression of TNFAIP3, a negative regulator of NF-κB signaling. Moreover, in vivo injection of miR-19b-3p mimics during meningitic E. coli challenge further aggravated the inflammatory damage to mice brains. These in vivo and in vitro findings indicate a novel quenching mechanism of the host by attenuating miR-19b-3p/TNFAIP3/NF-κB signaling in BMECs in response to meningitic E. coli, thus preventing CNS from further neuroinflammatory damage.


2006 ◽  
Vol 74 (11) ◽  
pp. 6408-6418 ◽  
Author(s):  
Nilay Sethi ◽  
Marie Sondey ◽  
Yunhong Bai ◽  
Kwang S. Kim ◽  
Diego Cadavid

ABSTRACT Relapsing fever (RF) is a spirochetal infection characterized by relapses of a febrile illness and spirochetemia due to the sequential appearance and disappearance of isogenic serotypes in the blood. The only difference between isogenic serotypes is the variable major outer membrane lipoprotein. In the absence of specific antibody, established serotypes cause persistent infection. Studies in our laboratory indicate that another consequence of serotype switching in RF is a change in neuroinvasiveness. As the next step to elucidate this phenomenon, we studied the interaction of the neurotropic Oz1 strain of the RF agent Borrelia turicatae with the cerebral microcirculation. During persistent infection of antibody-deficient mice, we found that serotype 1 entered the brain in larger numbers and caused more severe cerebral microgliosis than isogenic serotype 2. Microscopic examination revealed binding of B. turicatae to brain microvascular endothelial cells in vivo. In vitro we found that B. turicatae associated with brain microvascular endothelial cells (BMEC) significantly more than with fibroblasts or arachnoidal cells. The binding was completely eliminated by pretreatment of BMEC with proteinase K. Using transwell chambers with BMEC barriers, we found that serotype 1 crossed into the lower compartment significantly better than serotype 2. Heat killing significantly reduced BMEC crossing but not binding. We concluded that the interaction of B. turicatae with the cerebral microcirculation involves both binding and crossing brain microvascular endothelial cells, with significant differences among isogenic serotypes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2609-2609
Author(s):  
Tae-Hee Lee ◽  
Hava Karsenty Avraham ◽  
Huchun Li ◽  
Stephen J. Kennel ◽  
Shalom Avraham

Abstract The precise role of vascular endothelial growth factor (VEGF) in the regulation of integrins is not well elucidated due to their high redundancy. Here, we examined the effects of VEGF on the expression and activation of integrins in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and Ribonuclease (RNase) protection assays which cover most of the known integrins, we observed that VEGF significantly upregulated the mRNA expression of α1, α2, and α6 integrins in HBMECs. While VEGF was reported to induce α1 and α2 integrins, the observation of α6 integrin induction by VEGF is novel. Using small interfering RNA (siRNA) oligonucleotides for α6 integrin, we observed downregulation of the cell surface expression of α6 integrin in HBMECs. This downregulation resulted in inhibition of both HBMEC capillary morphogenesis and of the VEGF-induced adhesion and migration of the cells. VEGF also induced the activation of α6 integrin in the HBMECs. Functional blocking of α6 integrin by its specific antibody led to inhibition of VEGF-induced adhesion and migration as well as of in vivo angiogenesis, and significantly suppressed tumor angiogenesis and breast carcinoma cell growth in vivo. These results indicate that VEGF can modulate the in vitro angiogenesis of HBMECs via increased expression and activation of the α6 integrin, and that this integrin participates in VEGF-driven angiogenesis in vivo.


1991 ◽  
Vol 39 (11) ◽  
pp. 1555-1563 ◽  
Author(s):  
A W Vorbrodt ◽  
R S Trowbridge

This ultrastructural study was undertaken to determine the localization of cytochemically demonstrable blood-brain barrier (BBB)-associated enzymatic activities and of some nonenzymatic constituents in goat [corrected] brain microvascular endothelial cells (ECs) growing in vitro. Positive reactions for alkaline phosphatase (AP), 5'-nucleotidase (5'N), transport ATPase (Na+,K(+)-ATPase), and adenosine diphosphatase (ADPase) were present on both apical and basolateral plasma membranes (PMs) of the ECs. The reaction for calcium-dependent ATPase (Ca(2+)-ATPase) was less intense and was restricted to basolateral PM and associated plasmalemmal pits. These cells also revealed an abundance of anionic sites labeled with cationic colloidal gold (CCG) and Ricinus communis agglutinin 120 (RCA)-binding sites, specific for beta-D-galactosyl residues, on the apical PM. The labeling of the apical PM with Ulex europaeus agglutinin (UEA)-gold complex, specific for alpha-L-fucosyl residues, was negligible. When compared with results of cytochemical examination of the ECs of goat [corrected] brain capillary in vivo, these observations indicate that although cells cultivated in vitro retain at confluence the enzymatic activities typical for BBB-type ECS, they lose their characteristic (polar) localization. This loss is interpreted as a reflection of lost functional polarity of the microvascular endothelium in vitro resulting from deprivation of the normal influence of the components of brain parenchyma.


1993 ◽  
Vol 264 (2) ◽  
pp. H639-H652 ◽  
Author(s):  
M. Nishida ◽  
W. W. Carley ◽  
M. E. Gerritsen ◽  
O. Ellingsen ◽  
R. A. Kelly ◽  
...  

Although reciprocal intercellular signaling may occur between endocardial or microvascular endothelium and cardiac myocytes, suitable in vitro models have not been well characterized. In this report, we describe the isolation and primary culture of cardiac microvascular endothelial cells (CMEC) from both adult rat and human ventricular tissue. Differential uptake of fluorescently labeled acetylated low-density lipoprotein (Ac-LDL) indicated that primary isolates of rat CMEC were quite homogeneous, unlike primary isolates of human ventricular tissue, which required cell sorting based on Ac-LDL uptake to create endothelial cell-enriched primary cultures. The endothelial phenotype of both primary isolates and postsort subcultured CMEC and their microvascular origin were determined by characteristic histochemical staining for a number of endothelial cell-specific markers, by the absence of cells with fibroblast or pericyte-specific cell surface antigens, and by rapid tube formation on purified basement membrane preparations. Importantly, [3H]-thymidine uptake was increased 2.3-fold in subconfluent rat microvascular endothelial cells 3 days after coculture with adult rat ventricular myocytes because of release of an endothelial cell mitogen(s) into the extracellular matrix, resulting in a 68% increase in cell number compared with CMEC in monoculture. Thus biologically relevant cell-to-cell interactions can be modeled with this in vitro system.


2021 ◽  
Vol 18 ◽  
Author(s):  
Juxuan Ruan ◽  
Lei Wang ◽  
Jiheng Dai ◽  
Jing Li ◽  
Ning Wang ◽  
...  

Objective: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. Methods: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. Results: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB were increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. Conclusion: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


Sign in / Sign up

Export Citation Format

Share Document