scholarly journals Linker domain function predicts pathogenic MLH1 missense variants

2021 ◽  
Vol 118 (9) ◽  
pp. e2019215118
Author(s):  
James London ◽  
Juana Martín-López ◽  
Inho Yang ◽  
Jiaquan Liu ◽  
Jong-Bong Lee ◽  
...  

The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaquan Liu ◽  
Ryanggeun Lee ◽  
Brooke M. Britton ◽  
James A. London ◽  
Keunsang Yang ◽  
...  

AbstractA shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Juana Martin‐Lopez ◽  
James London ◽  
Inho Yang ◽  
Jiaquan Liu ◽  
Jong‐Bong Lee ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1039.1-1039
Author(s):  
A. Barinotti ◽  
M. Radin ◽  
I. Cecchi ◽  
S. G. Foddai ◽  
E. Rubini ◽  
...  

Background:Antiphospholipid Syndrome (APS) is an autoimmune disease whose precise aetiology is still unknown, but the high heterogeneity of its manifestations and clinical course is presumably due to the occurrence of different mechanisms and alterations at different levels and pathways [1]. The first genetic studies in APS focused primarily on the human leukocytes antigen system region, but more recent data highlighted a role of other genes in APS susceptibility, primarily those involved in the immune response and in the haemostatic process.Objectives:We aimed to deepen the investigation of APS genetic background starting from a case of familial APS, analysing two siblings with thrombotic APS (Table 1), both triple positive for antiphospholipid antibodies (aPL).Table 1.Main clinical and laboratory characteristics of the patients included in the study.PatientAgeaPL ProfileRelevant Clinical History1 (F)51Triple positive (LA, aCL IgG, aβ2GPI IgG)Two episodes of ischemic stroke, one episode of CAPS (renal thrombotic microangiopathy, visual impairment, ischemic stroke)2 (M)47Triple positive (LA, aCL IgG, aβ2GPI IgG)Three episodes of deep vein thrombosis, regardless ongoing well conducted therapy vitamin k antagonist and additional retinal vein thrombosisLA: lupus anticoagulant; aCL: anti-cardiolipin antibodies; aβ2GPI: anti- β2 glycoprotein I antibodies; CAPS: catastrophic APS.Methods:Genomic DNA was extracted from peripheral blood and the samples underwent Whole Exome Sequencing (WES). Sequencing was done on a 100X coverage, and reads have been aligned to the human reference genome (GRCh37/hg19 assembly) using the Burrows–Wheeler Alignment tool (BWA). The mean sequencing depth on target regions was 170X for patient 1, 205X for patient 2, moreover, 99.50% of the targeted bases had at least 10X coverage for all the three donors. The resulting single nucleotide polymorphisms (SNPs) have been analysed through a step-by-step process based on their frequency population (using Genome Aggregation Database), their predicted effects on the protein (using VarSome) and a literature research about the genes carrying them. Moreover, genes previously associated with a pro-thrombotic tendency and with APS have been analysed in the two patients.Results:Starting from more than 120000 SNPs for each patients, the analysis led to reduce the list of SNPs of interest to 27 missense mutations. The complete literature research regarding the genes carrying these mutations allowed to further reduce the number of selected genes, focusing on those that exert a role potentially involved in APS pathogenesis and development. In particular, these genes (PLA2G6, HSPG2, BCL3, ZFAT, ATP2B2, CRTC3 and ADCY3) take part in the immune response and the vascular homeostasis. The list of the DNA missense variants of interest found in our cases of familial APS is resumed in Figure 2.Figure 2.List of DNA missense variants of interest found in patient 1 and 2. Genes potentially involved in APS pathogenesis and development are highlighted in bold.No mutations on genes known to be associated with a pro-thrombotic state (F5, F2, MTHFR, F13A1, PROC, PROS1, FGB and SERPINE1), or on genes previously associated with APS (B2GPI, PF4V1, SELP, TLR2, TLR4, GP Ia, GP1BA, F2R, F2RL1, TFPI, F3, VEGFA, FLT1, and TNF) have been found in the WES analysis.Conclusion:To some extent, this can be seen as a proof of concept of the complexity of APS. Efforts to interpret the genetic risk factors involved in the heterogeneous clinical features of the syndrome, for instance, the integration of WES and network-based approaches might help to identify and stratify patients at risk of developing APS.References:[1]Iuliano A, Galeazzi M, Sebastiani GD. Antiphospholipid syndrome’s genetic and epigenetic aspects. Autoimmun Rev. 2019;18(9).Disclosure of Interests:None declared


2010 ◽  
Vol 192 (13) ◽  
pp. 3452-3463 ◽  
Author(s):  
Nicole M. Dupes ◽  
Brian W. Walsh ◽  
Andrew D. Klocko ◽  
Justin S. Lenhart ◽  
Heather L. Peterson ◽  
...  

ABSTRACT The β clamp is an essential replication sliding clamp required for processive DNA synthesis. The β clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of β clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49°C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49°C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the β clamp, a common site occupied by proteins that bind the β clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis β clamp separate the role of the β clamp in DNA replication from its role in MMR.


Author(s):  
Minxian Wang ◽  
Vivian S. Lee-Kim ◽  
Deepak S. Atri ◽  
Nadine H. Elowe ◽  
John Yu ◽  
...  

Background: Corin is a protease expressed in cardiomyocytes that plays a key role in salt handling and intravascular volume homeostasis via activation of natriuretic peptides. It is unknown if Corin loss-of-function (LOF) is causally associated with risk of coronary artery disease (CAD). Methods: We analyzed all coding CORIN variants in an Italian case-control study of CAD. We functionally tested all 64 rare missense mutations in Western Blot and Mass Spectroscopy assays for proatrial natriuretic peptide cleavage. An expanded rare variant association analysis for Corin LOF mutations was conducted in whole exome sequencing data from 37 799 CAD cases and 212 184 controls. Results: We observed LOF variants in CORIN in 8 of 1803 (0.4%) CAD cases versus 0 of 1725 controls ( P , 0.007). Of 64 rare missense variants profiled, 21 (33%) demonstrated <30% of wild-type activity and were deemed damaging in the 2 functional assays for Corin activity. In a rare variant association study that aggregated rare LOF and functionally validated damaging missense variants from the Italian study, we observed no association with CAD—21 of 1803 CAD cases versus 12 of 1725 controls with adjusted odds ratio of 1.61 ([95% CI, 0.79–3.29]; P =0.17). In the expanded sequencing dataset, there was no relationship between rare LOF variants with CAD was also observed (odds ratio, 1.15 [95% CI, 0.89–1.49]; P =0.30). Consistent with the genetic analysis, we observed no relationship between circulating Corin concentrations with incident CAD events among 4744 participants of a prospective cohort study—sex-stratified hazard ratio per SD increment of 0.96 ([95% CI, 0.87–1.07], P =0.48). Conclusions: Functional testing of missense mutations improved the accuracy of rare variant association analysis. Despite compelling pathophysiology and a preliminary observation suggesting association, we observed no relationship between rare damaging variants in CORIN or circulating Corin concentrations with risk of CAD.


2014 ◽  
Vol 106 (2) ◽  
pp. 435a
Author(s):  
Yi Liao ◽  
Jeremy W. Schroeder ◽  
Lyle A. Simmons ◽  
Julie S. Biteen

2004 ◽  
Vol 3 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Alison E. Gammie ◽  
Naz Erdeniz

This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.


2009 ◽  
Vol 96 (3) ◽  
pp. 417a
Author(s):  
Anna B. Kochaniak ◽  
Satoshi Habuchi ◽  
Johannes C. Walter ◽  
Antoine M. van Oijen

Sign in / Sign up

Export Citation Format

Share Document