scholarly journals A multiplier peroxiporin signal transduction pathway powers piscine spermatozoa

2021 ◽  
Vol 118 (10) ◽  
pp. e2019346118
Author(s):  
François Chauvigné ◽  
Carla Ducat ◽  
Alba Ferré ◽  
Tom Hansen ◽  
Montserrat Carrascal ◽  
...  

The primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.

2009 ◽  
Vol 370 (1-2) ◽  
pp. 75-81 ◽  
Author(s):  
G. Koumoundouros ◽  
C. Ashton ◽  
G. Xenikoudakis ◽  
I. Giopanou ◽  
E. Georgakopoulou ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chara Kourkouta ◽  
Alice Printzi ◽  
George Geladakis ◽  
Nikos Mitrizakis ◽  
Nikos Papandroulakis ◽  
...  

AbstractTemperatures experienced during early ontogeny significantly influence fish phenotypes, with clear consequences for the wild and reared stocks. We examined the effect of temperature (17, 20, or 23 °C) during the short embryonic and yolk-sac larval period, on the swimming performance and skeleton of metamorphosing Gilthead seabream larvae. In the following ontogenetic period, all fish were subjected to common temperature (20 °C). The critical swimming speed of metamorphosing larvae was significantly decreased from 9.7 ± 0.6 TL/s (total length per second) at 17 °C developmental temperature (DT) to 8.7 ± 0.6 and 8.8 ± 0.7 TL/s at 20 and 23 °C DT respectively (p < 0.05). Swimming performance was significantly correlated with fish body shape (p < 0.05). Compared with the rest groups, fish of 17 °C DT presented a slender body shape, longer caudal peduncle, terminal mouth and ventrally transposed pectoral fins. Moreover, DT significantly affected the relative depth of heart ventricle (VD/TL,p < 0.05), which was comparatively increased at 17 °C DT. Finally, the incidence of caudal-fin abnormalities significantly decreased (p < 0.05) with the increase of DT. To our knowledge, this is the first evidence for the significant effect of DT during the short embryonic and yolk-sac larval period on the swimming performance of the later stages.


2014 ◽  
Vol 36 (1) ◽  
pp. 120-129 ◽  
Author(s):  
F.A. Guardiola ◽  
P. Gónzalez-Párraga ◽  
J. Meseguer ◽  
A. Cuesta ◽  
M.A. Esteban

2021 ◽  
Vol 2 ◽  
Author(s):  
Pablo Arechavala-Lopez ◽  
Martin J. Lankheet ◽  
Carlos Díaz-Gil ◽  
Wout Abbink ◽  
Arjan P. Palstra

Acoustic transmitters equipped with accelerometer sensors are considered a useful tool to study swimming activity, including energetics and movement patterns, of fish species in aquaculture and in nature. However, given the novelty of this technique, further laboratory-derived calibrations are needed to assess the characteristics and settings of accelerometer acoustic transmitters for different species and specific environmental conditions. In this study, we compared accelerometer acoustic transmitter outputs with swimming performance and body motion of gilthead seabream (Sparus aurata L.) in swim-tunnels at different flow speeds, which allowed us to characterize the swimming activity of this fish species of high aquaculture interest. Tag implantation in the abdominal cavity had no significant effects on swimming performance and body motion parameters. Accelerations, cost of transport and variations on head orientation (angle with respect to flow direction) were negatively related to flow speed in the tunnel, whereas oxygen consumption and frequencies of tail-beat and head movements increased with flow speed. These results show that accelerometer acoustic transmitters mainly recorded deviations from sustained swimming in the tunnel, due to spontaneous and explorative swimming at the lowest speeds or intermittent burst and coast actions to cope with water flow. In conclusion, accelerometer acoustic transmitters applied in this study provided a proxy for unsustained swimming activity, but did not contemplate the high-energy cost spent by gilthead seabream on sustained swimming, and therefore, it did not provide a proxy for general activity. Despite this limitation, accelerometer acoustic transmitters provide valuable insight in swim patterns and therefore may be a good strategy for advancing our understanding of fish swimming behavior in aquaculture, allowing for rapid detection of changes in species-specific behavioral patterns considered indicators of fish welfare status, and assisting in the refinement of best management practices.


Author(s):  
Alexandre Mignucci ◽  
Jérôme Bourjea ◽  
Fabien Forget ◽  
Hossein Allal ◽  
Gilbert Dutto ◽  
...  

Gilthead seabream were equipped with intraperitoneal biologging tags to investigate cardiac responses to hypoxia and warming, comparing when fish were either swimming freely in a tank with conspecifics or confined to individual respirometers. After tag implantation under anaesthesia, heart rate (fH) required 60 hours to recover to a stable value in a holding tank. Subsequently, when undisturbed under control conditions (normoxia, 21°C), mean fH was always significantly lower in the tank than respirometers. In progressive hypoxia (100 - 15% oxygen saturation), mean fH in the tank was significantly lower than respirometers at oxygen levels until 40%, with significant bradycardia in both holding conditions below this. Simultaneous logging of tri-axial body acceleration revealed that spontaneous activity, inferred as the variance of external acceleration (VARm), was low and invariant in hypoxia. Warming (21 to 31°C) caused progressive tachycardia with no differences in fH between holding conditions. Mean VARm was, however, significantly higher in the tank during warming, with a positive relationship between VARm and fH across all temperatures. Therefore, spontaneous activity contributed to raising fH of fish in the tank during warming. Mean fH in respirometers had a highly significant linear relationship with mean rates of oxygen uptake, considering data from hypoxia and warming together. The high fH of confined seabream indicates that respirometry techniques may bias estimates of metabolic traits in some fishes, and that biologging on free-swimming fishes will provide more reliable insight into cardiac and behavioural responses to environmental stressors by fishes in their natural environment.


Aquaculture ◽  
2021 ◽  
Vol 537 ◽  
pp. 736462
Author(s):  
I. Elalfy ◽  
H.S. Shin ◽  
D. Negrín-Báez ◽  
A. Navarro ◽  
M.J. Zamorano ◽  
...  

2021 ◽  
Author(s):  
José Carlos Campos‐Sánchez ◽  
Francisco A. Guardiola ◽  
José María García Beltrán ◽  
Diana Ceballos‐Francisco ◽  
María Ángeles Esteban

Sign in / Sign up

Export Citation Format

Share Document