scholarly journals Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis

2021 ◽  
Vol 118 (10) ◽  
pp. e2019749118
Author(s):  
Jasmin Imran Alsous ◽  
Nicolas Romeo ◽  
Jonathan A. Jackson ◽  
Frank M. Mason ◽  
Jörn Dunkel ◽  
...  

From insects to mice, oocytes develop within cysts alongside nurse-like sister germ cells. Prior to fertilization, the nurse cells’ cytoplasmic contents are transported into the oocyte, which grows as its sister cells regress and die. Although critical for fertility, the biological and physical mechanisms underlying this transport process are poorly understood. Here, we combined live imaging of germline cysts, genetic perturbations, and mathematical modeling to investigate the dynamics and mechanisms that enable directional and complete cytoplasmic transport in Drosophila melanogaster egg chambers. We discovered that during “nurse cell (NC) dumping” most cytoplasm is transported into the oocyte independently of changes in myosin-II contractility, with dynamics instead explained by an effective Young–Laplace law, suggesting hydraulic transport induced by baseline cell-surface tension. A minimal flow-network model inspired by the famous two-balloon experiment and motivated by genetic analysis of a myosin mutant correctly predicts the directionality, intercellular pattern, and time scale of transport. Long thought to trigger transport through “squeezing,” changes in actomyosin contractility are required only once NC volume has become comparable to nuclear volume, in the form of surface contractile waves that drive NC dumping to completion. Our work thus demonstrates how biological and physical mechanisms cooperate to enable a critical developmental process that, until now, was thought to be mainly biochemically regulated.

2020 ◽  
Author(s):  
Jasmin Imran Alsous ◽  
Nicolas Romeo ◽  
Jonathan A. Jackson ◽  
Frank Mason ◽  
Jörn Dunkel ◽  
...  

AbstractFrom insects to mice, oocytes develop within cysts alongside nurse-like sister germ cells. Prior to fertilization, the nurse cells’ cytoplasmic contents are transported into the oocyte, which grows as its sister cells regress and die. Although critical for fertility, the biological and physical mechanisms underlying this transport process are poorly understood. Here, we combined live imaging of germline cysts, genetic perturbations, and mathematical modeling to investigate the dynamics and mechanisms that enable directional and complete cytoplasmic transport in Drosophila melanogaster egg chambers. We discovered that during ‘nurse cell (NC) dumping’, most cytoplasm is transported into the oocyte independently of changes in myosin-II contractility, with dynamics instead explained by an effective Young-Laplace’s law, suggesting hydraulic transport induced by baseline cell surface tension. A minimal flow network model inspired by the famous two-balloon experiment and genetic analysis of a myosin mutant correctly predicts the directionality of transport time scale, as well as its intercellular pattern. Long thought to trigger transport through ‘squeezing’, changes in actomyosin contractility are required only once cell volume is reduced by ∼75%, in the form of surface contractile waves that drive NC dumping to completion. Our work thus demonstrates how biological and physical mechanisms cooperate to enable a critical developmental process that, until now, was thought to be a mainly biochemically regulated phenomenon.


2020 ◽  
Author(s):  
Soline Chanet ◽  
Jean-René Huynh

ABSTRACTEncapsulation of germline cells by layers of somatic cells forms the basic unit of female reproduction called primordial follicles in mammals and egg chambers in Drosophila. How germline and somatic tissues are coordinated for the morphogenesis of each separated unit remains poorly understood. Here, using improved live-imaging of Drosophila ovaries, we uncovered periodic actomyosin waves at the cortex of germ cells. These contractile waves are associated with pressure release blebs, which project from germ cells into somatic cells. We demonstrate that these cortical activities, together with cadherin-based adhesion, are required to sort each germline cyst as one collective unit. Genetic perturbations of cortical contractility, blebs protrusion or adhesion between germline and somatic cells induced failures to encapsulate any germ cells or the inclusion of too many germ cells or even the mechanical split of germline cysts. Our results reveal that germ cells play an active role in the physical coupling with somatic cells to produce the female gamete.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950116 ◽  
Author(s):  
BOQI XIAO ◽  
YIDAN ZHANG ◽  
YAN WANG ◽  
GUOPING JIANG ◽  
MINGCHAO LIANG ◽  
...  

In this paper, fluid transport through fibrous porous media is studied by the fractal theory with a focus on the effect of surface roughness of capillaries. A fractal model for Kozeny–Carman (KC) constant and dimensionless permeability of fibrous porous media with roughened surfaces is derived. The determined KC constant and dimensionless permeability of fibrous porous media with roughened surfaces are in good agreement with available experimental data and existing models reported in the literature. It is found that the KC constant of fibrous porous media with roughened surfaces increases with the increase of relative roughness, porosity, area fractal dimension of pore and tortuosity fractal dimension, respectively. Besides, it is seen that the dimensionless permeability of fibrous porous media with roughened surfaces decreases with increasing relative roughness and tortuosity fractal dimension. However, it is observed that the dimensionless permeability of fibrous porous media with roughened surfaces increases with porosity. With the proposed fractal model, the physical mechanisms of fluids transport through fibrous porous media are better elucidated.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1937-1946 ◽  
Author(s):  
S. Wheatley ◽  
S. Kulkarni ◽  
R. Karess

The X-linked Drosophila gene spaghetti squash (sqh) encodes the regulatory light chain of nonmuscle myosin II. To assess the requirement for myosin II in oogenesis and early embryogenesis, we induced homozygous germline clones of the hypomorphic mutation sqh1 in otherwise heterozygous mothers. Developing oocytes in such sqh1 germline clones often failed to attain full size due to a defect in ‘dumping’, the rapid phase of cytoplasmic transport from nurse cells. In contrast to other dumpless mutants described to date, sqh1 egg chambers showed no evidence of ring canal obstruction, and no obvious alteration in the actin network. However the distribution of myosin II was abnormal. We conclude that the molecular motor responsible for cytoplasmic dumping is supplied largely, if not exclusively, by nurse cell myosin II and we suggest that regulation of myosin activity is one means by which cytoplasmic transport may be controlled during oocyte development. The eggs resulting from sqh1 clones, though smaller than normal, began development but exhibited an early defect in axial migration of cleavage nuclei towards the posterior pole of the embryo, in a similar manner to that seen in early cleavage eggs in which the actin cytoskeleton is disrupted. Thus both nurse cell dumping and axial migration require a maternally supplied myosin II.


2020 ◽  
Author(s):  
Zehra Ali-Murthy ◽  
Richard D. Fetter ◽  
Thomas B. Kornberg

ABSTRACTIn many animals, oocytes develop together with sister germline cells that pass products to the developing oocyte. In Drosophila, fifteen sister germline (nurse) cells in each egg chamber are known to apoptose by stage 12-13, but we discovered that two specific nurse cells that are juxtaposed to the oocyte are eliminated precociously at stage 10B. These nurse cells fuse with the oocyte and their nuclei extrude through an opening that forms in the oocyte. These nuclei extinguish in the ooplasm, and at stage 11, egg chambers have thirteen nucleated nurse cells and the plasma membrane of the oocyte is mostly restored. In infrequent egg chambers in which nurse cells are not eliminated, oocytes do not develop normally and are not fertilized. Precocious elimination is common to other Drosophila species. We conclude that nurse cells are distinguished by position and identity, and that nurse cell dissolution proceeds in two stages.


2018 ◽  
Vol 217 (12) ◽  
pp. 4230-4252 ◽  
Author(s):  
Jonathan B. Michaux ◽  
François B. Robin ◽  
William M. McFadden ◽  
Edwin M. Munro

Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early Caenorhabditis elegans embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, the accumulation and disappearance of actomyosin and persist in the absence of Myosin II. We find that fast (likely indirect) autoactivation of RhoA drives pulse initiation, while delayed, F-actin–dependent accumulation of the RhoA GTPase-activating proteins RGA-3/4 provides negative feedback to terminate each pulse. A mathematical model, constrained by our data, suggests that this combination of feedbacks is tuned to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be tuned or coupled differently to actomyosin dynamics to produce a diversity of morphogenetic outcomes.


2016 ◽  
Author(s):  
Jonathan B. Michaux ◽  
François B. Robin ◽  
William M. McFadden ◽  
Edwin M. Munro

AbstractPulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combine quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early C. elegans embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, accumulation and disappearance of actomyosin, and persist in the nearly complete absence of Myosin II. We find that fast positive feedback on RhoA activation drives pulse initiation, while F-actin dependent accumulation of the RhoA GTPase activating proteins (GAPs) RGA-3/4 provides delayed negative feedback to terminate each pulse. An experimentally constrained mathematical model confirms that in principle these feedbacks are sufficient to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be differently tuned or coupled to actomyosin dynamics to produce a diversity of morphogenetic outcomes.


2020 ◽  
Vol 43 ◽  
Author(s):  
John Corbit ◽  
Chris Moore

Abstract The integration of first-, second-, and third-personal information within joint intentional collaboration provides the foundation for broad-based second-personal morality. We offer two additions to this framework: a description of the developmental process through which second-personal competence emerges from early triadic interactions, and empirical evidence that collaboration with a concrete goal may provide an essential focal point for this integrative process.


Author(s):  
Koenraad G F Janssens ◽  
Omer Van der Biest ◽  
Jan Vanhellemont ◽  
Herman E Maes ◽  
Robert Hull

There is a growing need for elastic strain characterization techniques with submicrometer resolution in several engineering technologies. In advanced material science and engineering the quantitative knowledge of elastic strain, e.g. at small particles or fibers in reinforced composite materials, can lead to a better understanding of the underlying physical mechanisms and thus to an optimization of material production processes. In advanced semiconductor processing and technology, the current size of micro-electronic devices requires an increasing effort in the analysis and characterization of localized strain. More than 30 years have passed since electron diffraction contrast imaging (EDCI) was used for the first time to analyse the local strain field in and around small coherent precipitates1. In later stages the same technique was used to identify straight dislocations by simulating the EDCI contrast resulting from the strain field of a dislocation and comparing it with experimental observations. Since then the technique was developed further by a small number of researchers, most of whom programmed their own dedicated algorithms to solve the problem of EDCI image simulation for the particular problem they were studying at the time.


Sign in / Sign up

Export Citation Format

Share Document