scholarly journals Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation

2021 ◽  
Vol 118 (26) ◽  
pp. e2026191118
Author(s):  
Simon Miller ◽  
Ashutosh Srivastava ◽  
Yoshiko Nagai ◽  
Yoshiki Aikawa ◽  
Florence Tama ◽  
...  

The circadian clock is a biological timekeeper that operates through transcription–translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation. However, intrinsic differences in the compound-binding FAD (flavin adenine dinucleotide) pockets between CRY1 and CRY2 are not well understood, partly because of nonoptimal properties of previously reported apo form structures in this particular region constituted by almost identical sequences. Here, we show unliganded CRY1 and CRY2 crystal structures with well-defined electron densities that are largely free of crystal contacts at the FAD pocket and nearby lid loop. We revealed conformational isomerism in key residues. In particular, CRY1 W399 and corresponding CRY2 W417 in the FAD pocket had distinct conformations (“out” for CRY1 and “in” for CRY2) by interacting with the lid loop residues CRY1 Q407 and CRY2 F424, respectively, resulting in different overall lid loop structures. Molecular dynamics simulations supported that these conformations were energetically favorable to each isoform. Isoform-selective compounds KL101 and TH301 preferred intrinsic “out” and “in” conformations of the tryptophan residue in CRY1 and CRY2, respectively, while the nonselective compound KL001 fit to both conformations. Mutations of lid loop residues designed to perturb their isoform-specific interaction with the tryptophan resulted in reversed responses of CRY1 and CRY2 to KL101 and TH301. We propose that these intrinsic structural differences of CRY1 and CRY2 can be targeted for isoform-selective regulation.

2012 ◽  
Vol 8 ◽  
pp. 1858-1866 ◽  
Author(s):  
Julia Meier ◽  
Kristin Kassler ◽  
Heinrich Sticht ◽  
Jutta Eichler

Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide–gp120 complexes. The specificity of the peptide–gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids.


2020 ◽  
Author(s):  
Neil J. Thomson ◽  
Owen N. Vickery ◽  
Callum M. Ives ◽  
Ulrich Zachariae

G-protein-coupled receptors (GPCRs) transmit signals across the cell membrane, forming the largest family of membrane proteins in humans. Most GPCRs activate through an evolutionarily conserved mechanism, which involves reorientation of helices and key residues, rearrangement of a hydrogen bonding network mediated by water molecules, and the expulsion of a sodium ion from a protonatable binding site. However, how these components interplay to engage the signal effector binding site remains elusive. Here, we applied information theory to molecular dynamics simulations of pharmaceutically important GPCRs to trace concerted conformational variations across the receptors. We discovered a conserved communication pathway that includes protein residues and cofactors and enables the exchange of information between the extracellular sodium binding site and the intracellular G-protein binding region, coupling the most highly conserved protonatable residues at long distance. Reorientation of internal water molecules was found to be essential for signal transmission along this pathway. By inhibiting protonation, sodium decoupled this connectivity, identifying the ion as a master switch that determines the receptors’ ability to move towards active conformations.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Mohsen Chitsaz ◽  
Lauren Booth ◽  
Mitchell T. Blyth ◽  
Megan L. O’Mara ◽  
Melissa H. Brown

ABSTRACT A key mechanism that Neisseria gonorrhoeae uses to achieve multidrug resistance is the expulsion of structurally different antimicrobials by the MtrD multidrug efflux protein. MtrD resembles the homologous Escherichia coli AcrB efflux protein with several common structural features, including an open cleft containing putative access and deep binding pockets proposed to interact with substrates. A highly discriminating N. gonorrhoeae strain, with the MtrD and NorM multidrug efflux pumps inactivated, was constructed and used to confirm and extend the substrate profile of MtrD to include 14 new compounds. The structural basis of substrate interactions with MtrD was interrogated by a combination of long-timescale molecular dynamics simulations and docking studies together with site-directed mutagenesis of selected residues. Of the MtrD mutants generated, only one (S611A) retained a wild-type (WT) resistance profile, while others (F136A, F176A, I605A, F610A, F612C, and F623C) showed reduced resistance to different antimicrobial compounds. Docking studies of eight MtrD substrates confirmed that many of the mutated residues play important nonspecific roles in binding to these substrates. Long-timescale molecular dynamics simulations of MtrD with its substrate progesterone showed the spontaneous binding of the substrate to the access pocket of the binding cleft and its subsequent penetration into the deep binding pocket, allowing the permeation pathway for a substrate through this important resistance mechanism to be identified. These findings provide a detailed picture of the interaction of MtrD with substrates that can be used as a basis for rational antibiotic and inhibitor design. IMPORTANCE With over 78 million new infections globally each year, gonorrhea remains a frustratingly common infection. Continuous development and spread of antimicrobial-resistant strains of Neisseria gonorrhoeae, the causative agent of gonorrhea, have posed a serious threat to public health. One of the mechanisms in N. gonorrhoeae involved in resistance to multiple drugs is performed by the MtrD multidrug resistance efflux pump. This study demonstrated that the MtrD pump has a broader substrate specificity than previously proposed and identified a cluster of residues important for drug binding and translocation. Additionally, a permeation pathway for the MtrD substrate progesterone actively moving through the protein was determined, revealing key interactions within the putative MtrD drug binding pockets. Identification of functionally important residues and substrate-protein interactions of the MtrD protein is crucial to develop future strategies for the treatment of multidrug-resistant gonorrhea.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amanat Ali ◽  
Bincy Baby ◽  
Soja Saghar Soman ◽  
Ranjit Vijayan

Abstract Hemorphins are atypical endogenous opioid peptides produced by the cleavage of hemoglobin beta chain. Several studies have reported the therapeutic potential of hemorphin in memory enhancement, blood regulation, and analgesia. However, the mode of interaction of hemorphin with its target remains largely elusive. The decapeptide LVV-hemorphin-7 is the most stable form of hemorphin. It binds with high affinity to mu-opioid receptors (MOR), angiotensin-converting enzyme (ACE) and insulin-regulated aminopeptidase (IRAP). In this study, computational methods were used extensively to elucidate the most likely binding pose of mammalian LVV-hemorphin-7 with the aforementioned proteins and to calculate the binding affinity. Additionally, alignment of mammalian hemorphin sequences showed that the hemorphin sequence of the camel harbors a variation – a Q > R substitution at position 8. This study also investigated the binding affinity and the interaction mechanism of camel LVV-hemorphin-7 with these proteins. To gain a better understanding of the dynamics of the molecular interactions between the selected targets and hemorphin peptides, 100 ns molecular dynamics simulations of the best-ranked poses were performed. Simulations highlighted major interactions between the peptides and key residues in the binding site of the proteins. Interestingly, camel hemorphin had a higher binding affinity and showed more interactions with all three proteins when compared to the canonical mammalian LVV-hemorphin-7. Thus, camel LVV-hemorphin-7 could be explored as a potent therapeutic agent for memory loss, hypertension, and analgesia.


2019 ◽  
Vol 37 ◽  
pp. e216
Author(s):  
M. Tetti ◽  
I. Castellano ◽  
F. Veneziano ◽  
C. Magnino ◽  
F. Veglio ◽  
...  

2001 ◽  
Vol 13 (12) ◽  
pp. 2747
Author(s):  
Karen E. Thum ◽  
Minkyun Kim ◽  
David A. Christopher ◽  
John E. Mullet

2018 ◽  
Vol 19 (6) ◽  
pp. 1675 ◽  
Author(s):  
Martina Tetti ◽  
Isabella Castellano ◽  
Francesca Veneziano ◽  
Corrado Magnino ◽  
Franco Veglio ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao Zhang ◽  
Xiaoyuan Liu ◽  
Zhiyang Zhang ◽  
Yuan Zhao ◽  
Chaojie Wang

Glucosamine 6-phosphate deaminase (NagB) influences the direction of N-acetylglucosamine (GlcNAc) metabolism, facilitating the conversion of D-glucosamine 6-phosphate (GlcN6P) to D-fructose 6-phosphate (Fru6P) with the release of ammonia. Here, extensive molecular dynamics simulations combined with various techniques were performed to study the recognition and delivery process of GlcN6P by SmuNagB, due to its guidance of subsequent enzymatic reaction. The key residues Lys194, His130, Arg127, Thr38, and Ser37 stabilize GlcN6P in the active site by hydrogen bond interactions, therein electrostatic and polar solvent effects provide the primary traction. Four delivery channels were identified, with GlcN6P most likely to enter the active site of NagB through a “door” comprising residues 6–10, 122–136, and 222–233. The corresponding mechanism and thermodynamic properties were investigated. An exothermic recognition and delivery process were detected, accompanied by the flipping of GlcN6P and changes in key direct and indirect hydrogen bond interactions, which provide the driving force for the chemical reaction to occur. Furthermore, “the lid motif” was identified that remain open in alkaline condition with different extent of opening at each stage of transfer that induced GlcN6P to move the active site of NagB. The work will assist in the elucidation of the catalytic mechanism of action of NagB, allowing inhibitors to be designed with superior dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document