scholarly journals Correction to Supporting Information for Stern et al., Experimental and statistical reevaluation provides no evidence for Drosophila courtship song rhythms

2021 ◽  
Vol 118 (6) ◽  
pp. e2100258118
Keyword(s):  
2017 ◽  
Vol 284 (1854) ◽  
pp. 20170431 ◽  
Author(s):  
Samya Chakravorty ◽  
Bertrand C. W. Tanner ◽  
Veronica Lee Foelber ◽  
Hien Vu ◽  
Matthew Rosenthal ◽  
...  

The indirect flight muscles (IFMs) of Drosophila and other insects with asynchronous flight muscles are characterized by a crystalline myofilament lattice structure. The high-order lattice regularity is considered an adaptation for enhanced power output, but supporting evidence for this claim is lacking. We show that IFMs from transgenic flies expressing flightin with a deletion of its poorly conserved N-terminal domain ( fln ΔN62 ) have reduced inter-thick filament spacing and a less regular lattice. This resulted in a decrease in flight ability by 33% and in skinned fibre oscillatory power output by 57%, but had no effect on wingbeat frequency or frequency of maximum power output, suggesting that the underlying actomyosin kinetics is not affected and that the flight impairment arises from deficits in force transmission. Moreover, we show that fln ΔN62 males produced an abnormal courtship song characterized by a higher sine song frequency and a pulse song with longer pulses and longer inter-pulse intervals (IPIs), the latter implicated in male reproductive success. When presented with a choice, wild-type females chose control males over mutant males in 92% of the competition events. These results demonstrate that flightin N-terminal domain is required for optimal myofilament lattice regularity and IFM activity, enabling powered flight and courtship song production. As the courtship song is subject to female choice, we propose that the low amino acid sequence conservation of the N-terminal domain reflects its role in fine-tuning species-specific courtship songs.


2008 ◽  
Vol 76 (3) ◽  
pp. 1065-1071 ◽  
Author(s):  
Marlene Zuk ◽  
Darren Rebar ◽  
Sarah Primrose Scott

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146999 ◽  
Author(s):  
Atsushi Miyashita ◽  
Hayato Kizaki ◽  
Kazuhisa Sekimizu ◽  
Chikara Kaito

1999 ◽  
Vol 77 (4) ◽  
pp. 542-550 ◽  
Author(s):  
Frode Engen ◽  
Ivar Folstad

Sexually selected characters may reveal information about individual quality during mate choice. Fin display and sound emitted with the aid of specific drumming muscles are characters described as being of importance in the reproductive behaviour of cod (Gadus morhua L.). We examined whether the mass of drumming muscles or fin size was sexually dimorphic, and whether these characters could provide information about male cod that was potentially of benefit to mate-seeking females. The mass of drumming muscles, but not fin size, was sexually dimorphic, with males having larger muscles than females. Neither the mass of drumming muscles nor fin size apparently revealed information about traits that may be associated with parasite resistance in males (i.e., parasite intensities and leukocyte densities). However, variation in fertilization potential (i.e., spermatocrit level) among males was related to both mass of drumming muscles and fin size. Thus, by evaluating sound and fin size, mate-seeking females may obtain information about fertilization ability among males. This may be of particular importance for females in a species whose eggs commonly remain unfertilized. Furthermore, males with large drumming muscles and small fins had low spermatocrit levels. This may reflect reductions in sperm density resulting from frequent ejaculations by attractive males. A costly allocation of resources for the development of drumming muscles at the expense of fin muscles used for propulsion is presented as a tentative explanation as to why females should pay attention to these particular traits during courtship. Increased investment in "song" may thus appear at the expense of "dance."


1993 ◽  
Vol 13 (9) ◽  
pp. 5593-5603
Author(s):  
Y S Yang ◽  
J H Hanke ◽  
L Carayannopoulos ◽  
C M Craft ◽  
J D Capra ◽  
...  

We have cloned the ubiquitous form of an octamer-binding, 60-kDa protein (NonO) that appears to be the mammalian equivalent of the Drosophila visual and courtship song behavior protein, no-on-transient A/dissonance (nonAdiss). A region unprecedently rich in aromatic amino acids containing two ribonuclear protein binding motifs is highly conserved between the two proteins. A ubiquitous form of NonO is present in all adult tissues, whereas lymphocytes and retina express unique forms of NonO mRNA. The ubiquitous form contains a potential helix-turn-helix motif followed by a highly charged region but differs from prototypic octamer-binding factors by lacking the POU DNA-binding domain. In addition to its conventional octamer duplex-binding, NonO binds single-stranded DNA and RNA at a site independent of the duplex site.


2000 ◽  
Vol 75 (1) ◽  
pp. 37-45 ◽  
Author(s):  
ANNELI HOIKKALA ◽  
SELIINA PÄÄLLYSAHO ◽  
JOUNI ASPI ◽  
JAAKKO LUMME

The males of six species of the Drosophila virilis group (including D. virilis) keep their wings extended while producing a train of sound pulses, where the pulses follow each other without any pause. The males of the remaining five species of the group produce only one sound pulse during each wing extension/vibration, which results in species-specific songs with long pauses (in D. littoralis about 300 ms) between successive sound pulses. Genetic analyses of the differences between the songs of D. virilis and D. littoralis showed that species-specific song traits are affected by genes on the X chromosome, and for the length of pause, also by genes on chromosomes 3 and 4. The X chromosomal genes having a major impact on pulse and pause length were tightly linked with white, apricot and notched marker genes located at the proximal third of the chromosome. A large inversion in D. littoralis, marked by notched, prevents more precise localization of these genes by classical crossing methods.


2017 ◽  
Author(s):  
Yun Ding ◽  
Joshua L. Lillvis ◽  
Jessica Cande ◽  
Gordon J. Berman ◽  
Benjamin J. Arthur ◽  
...  

AbstractThe neural basis for behavioural evolution is poorly understood. Functional comparisons of homologous neurons may reveal how neural circuitry contributes to behavioural evolution, but homologous neurons cannot be identified and manipulated in most taxa. Here, we compare the function of homologous courtship song neurons by exporting neurogenetic reagents that label identified neurons in Drosophila melanogaster to D. yakuba. We found a conserved role for a cluster of brain neurons that establish a persistent courtship state. In contrast, a descending neuron with conserved electrophysiological properties drives different song types in each species. Our results suggest that song evolved, in part, due to changes in the neural circuitry downstream of this descending neuron. This experimental approach can be generalized to other neural circuits and therefore provides an experimental framework for studying how the nervous system has evolved to generate behavioural diversity.


2012 ◽  
Vol 10 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Sergey A Fedotov ◽  
Julia V Bragina ◽  
Nataliya G Besedina ◽  
Larisa V Danilenkova ◽  
Elena A Kamysheva ◽  
...  

To investigate molecular mechanisms of central pattern generators (CPG s) functioning, we carried out a screening of collection of Drosophila P-insertional mutants for strong deviations in locomotion and courtship song. In 21 mutants, the site of the P-insertion was localized by sequencing of the fragments of genomic DNA flanking the P-element. Bioinformational analysis revealed a list of candidate genes, potential players in development and functioning of CPG s. Possible involvement of certain identified genes in rhythmic motor activity is suggested for the first time (CG15630, Map205).


1994 ◽  
Vol 48 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Michael G. Ritchie ◽  
Charalambos P. Kyriacou

Sign in / Sign up

Export Citation Format

Share Document