scholarly journals Single-neuron firing cascades underlie global spontaneous brain events

2021 ◽  
Vol 118 (47) ◽  
pp. e2105395118
Author(s):  
Xiao Liu ◽  
David A. Leopold ◽  
Yifan Yang

The resting brain consumes enormous energy and shows highly organized spontaneous activity. To investigate how this activity is manifest among single neurons, we analyzed spiking discharges of ∼10,000 isolated cells recorded from multiple cortical and subcortical regions of the mouse brain during immobile rest. We found that firing of a significant proportion (∼70%) of neurons conformed to a ubiquitous, temporally sequenced cascade of spiking that was synchronized with global events and elapsed over timescales of 5 to 10 s. Across the brain, two intermixed populations of neurons supported orthogonal cascades. The relative phases of these cascades determined, at each moment, the response magnitude evoked by an external visual stimulus. Furthermore, the spiking of individual neurons embedded in these cascades was time locked to physiological indicators of arousal, including local field potential power, pupil diameter, and hippocampal ripples. These findings demonstrate that the large-scale coordination of low-frequency spontaneous activity, which is commonly observed in brain imaging and linked to arousal, sensory processing, and memory, is underpinned by sequential, large-scale temporal cascades of neuronal spiking across the brain.

2021 ◽  
Author(s):  
Xiao Liu ◽  
David A. Leopold ◽  
Yifan Yang

AbstractThe resting brain consumes enormous energy and shows highly organized spontaneous activity. To investigate how this activity is manifest among single neurons, we analyzed spiking discharges of ∼10,000 isolated cells recorded from multiple cortical and subcortical regions of the mouse brain during immobile rest. We found that firing of a significant proportion (∼70%) of neurons conformed to a ubiquitous, temporally sequenced cascade of spiking that was synchronized with global events and elapsed over timescales of 5-10 seconds. Across the brain, two intermixed populations of neurons supported orthogonal cascades. The relative phases of these cascades determined, at each moment, the response magnitude evoked by an external visual stimulus. Furthermore, the spiking of individual neurons embedded in these cascades was time locked to physiological indicators of arousal, including local field potential (LFP) power, pupil diameter, and hippocampal ripples. These findings demonstrate that the large-scale coordination of low-frequency spontaneous activity, which is commonly observed in brain imaging and linked to arousal, sensory processing, and memory, is underpinned by sequential, large-scale temporal cascades of neuronal spiking across the brain.


2017 ◽  
Author(s):  
Anika Gupta ◽  
Heiko Horn ◽  
Parisa Razaz ◽  
April Kim ◽  
Michael Lawrence ◽  
...  

ABSTRACTLarge-scale cancer sequencing studies have uncovered dozens of mutations critical to cancer initiation and progression. However, a significant proportion of genes linked to tumor propagation remain hidden, often due to noise in sequencing data confounding low frequency alterations. Further, genes in networks under purifying selection (NPS), or those that are mutated in cancers less frequently than would be expected by chance, may play crucial roles in sustaining cancers but have largely been overlooked. We describe here a statistical framework that identifies genes that have a first order protein interaction network significantly depleted for mutations, to elucidate key genetic contributors to cancers. Not reliant on and thus, unbiased by, the gene of interest’s mutation rate, our approach has identified 685 putative genes linked to cancer development. Comparative analysis indicates statistically significant enrichment of NPS genes in previously validated cancer vulnerability gene sets, while further identifying novel cancer-specific candidate gene targets. As more tumor genomes are sequenced, integrating systems level mutation data through this network approach should become increasingly useful in pinpointing gene targets for cancer diagnosis and treatment.


1970 ◽  
Vol 53 (1) ◽  
pp. 1-8
Author(s):  
H. KOOPOWITZ ◽  
D. W. EWER

1. The spontaneous activity displayed by Planocera preparations decreased with repetitive electrical stimulation. It was also found that the amplitude of response was related to the time since previous spontaneous activity. The response decreased as the time interval between spontaneous activity and stimulus decreased. 2. When a preparation was stimulated at a low frequency then there was an increase in the tone of the preparation. If the low-frequency stimulus was then followed by a stimulus at a slightly higher frequency then there was a drop in tone caused by a relaxation of the preparation. 3. The extent of relaxation which occurred depended on parameters or the high-frequency stimulus but could be facilitated by increasing either the frequency or the duration of the initial low-frequency stimulus. 4. Pathways involved with conduction of excitation from one side of the animal to the other pass through the brain. The brain is also required for transmission of the relaxation effect. 5. It is concluded that these relaxation and depressant effects reflect the presence of a true inhibitory system which also shows facilitation.


2021 ◽  
Author(s):  
Hang Yang ◽  
Hong Zhang ◽  
Xin Di ◽  
Shuai Wang ◽  
Chun Meng ◽  
...  

The resting-state human brain is a dynamic system that shows frequency-specific characteristics. Coactivation pattern (CAP) analysis has been recently used to identify recurring brain states sharing similar coactivation configurations. However, whether and how CAPs differ across different sub-frequency bands are unknown. In the current study, in addition to the typical low-frequency range (0.01 - 0.08 Hz), the spatial and temporal characteristics of CAPs in four sub-frequency bands, slow-5 (0.01 - 0.027 Hz), slow-4 (0.027 - 0.073 Hz), slow-3 (0.073 - 0.198 Hz), and slow-2 (0.198 - 0.25 Hz), were studied. Six CAP states were obtained for each band., The CAPs from the typical frequency range were spatially largely overlapped with those in slow-5, slow-4 and slow-3 but not with those in slow-2. With the increase of frequency, the CAP state became more unstable and resulted in an overall shorter persistence. The spatial and temporal characteristics of slow-4 and slow-5 were further compared, because they constitute most power of the resting-state fMRI signals. In general, slow-4 showed stronger coactivations or co-deactivations in subcortical regions, while slow-5 showed stronger coactivations or co-deactivations in large-scale cortical networks such as the dorsal attention network. Lastly, frequency-dependent dynamic alterations were also observed in schizophrenia patients. Combining the information obtained from both slow-5 and slow-4 increased the classification accuracy of schizophrenia patients than only using the typical range. In conclusion, our results revealed that the spatial and temporal characteristics of CAP state varied at different frequency bands, which could be helpful for identifying brain alterations in schizophrenia.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chuanliang Han ◽  
Tian Wang ◽  
Yujie Wu ◽  
Yang Li ◽  
Yi Yang ◽  
...  

Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found in many brain regions, and it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range horizontal connections (HC) in the brain remains unclear. Here, we aimed to understand this question in a large-scale network model for the primary visual cortex (V1). We created a computational model composed of multiple excitatory and inhibitory units with biologically plausible connectivity patterns for RC, FF, FB, and HC in V1; then, we quantitated GAMMA in network models at different strength levels of HC and other connection types. Surprisingly, we found that HC and FB, the two types of large-scale connections, play very different roles in generating and modulating GAMMA. While both FB and HC modulate a fast gamma oscillation (around 50-60 Hz) generated by FF and RC, HC generates a new GAMMA oscillating around 30 Hz, whose power and peak frequency can also be modulated by FB. Furthermore, response properties of the two GAMMAs in a network with both HC and FB are different in a way that is highly consistent with a recent experimental finding for distinct GAMMAs in macaque V1. The results suggest that distinct GAMMAs are signatures for neural connections in different spatial scales and they might be related to different functions for information integration. Our study, for the first time, pinpoints the underlying circuits for distinct GAMMAs in a mechanistic model for macaque V1, which might provide a new framework to study multiple gamma oscillations in other cortical regions.


2017 ◽  
Vol 114 (33) ◽  
pp. E6972-E6981 ◽  
Author(s):  
Russell W. Chan ◽  
Alex T. L. Leong ◽  
Leon C. Ho ◽  
Patrick P. Gao ◽  
Eddie C. Wong ◽  
...  

The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal–cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal–cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal–cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.


2018 ◽  
Vol 115 (26) ◽  
pp. 6858-6863 ◽  
Author(s):  
Giri P. Krishnan ◽  
Oscar C. González ◽  
Maxim Bazhenov

Resting- or baseline-state low-frequency (0.01–0.2 Hz) brain activity is observed in fMRI, EEG, and local field potential recordings. These fluctuations were found to be correlated across brain regions and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow resting-state fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (<0.05 Hz) activity could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra- and extracellular K+and Na+and intracellular Cl−ions, Na+/K+exchange pump, and KCC2 cotransporter. In the network model simulating resting awake-like brain state, we observed infra-slow fluctuations in the extracellular K+concentration, Na+/K+pump activation, firing rate of neurons, and local field potentials. Holding K+concentration constant prevented generation of the infra-slow fluctuations. The amplitude and peak frequency of this activity were modulated by the Na+/K+pump, AMPA/GABA synaptic currents, and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state activity observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are reported as the resting-state fluctuations in fMRI and EEG recordings.


Author(s):  
Yuliya S. Dzhos ◽  
◽  
Irina A. Men’shikova ◽  

This article presents the results of the study on spectral electroencephalogram (EEG) characteristics in 7–10-year-old children (8 girls and 22 boys) having difficulties with voluntary regulation of activity after 10 and 20 neurofeedback sessions using beta-activating training. Brain bioelectric activity was recorded in 16 standard leads using the Neuron-Spectrum-4/VPM complex. The dynamics was assessed by EEG beta and theta bands during neurofeedback. An increase in the total power of beta band oscillations was established both after 10 and after 20 sessions of EEG biofeedback in the frontal (p ≤ 0.001), left parietal (p ≤ 0.036), and temporal (p ≤ 0.003) areas of the brain. A decrease in the spectral characteristics of theta band oscillations was detected: after 10 neurofeedback sessions in the frontal (p ≤ 0.008) and temporal (p ≤ 0.006) areas of both hemispheres, as well as in the parietal area of the left hemisphere (p ≤ 0.005); after 20 sessions, in the central (p ≤ 0.004), frontal (p ≤ 0.001) and temporal (p ≤ 0.001) areas of both hemispheres, as well as in the occipital (p ≤ 0.047) and parietal (p ≤ 0.001) areas of the left hemisphere. The study into the dynamics of bioelectric activity during biofeedback using EEG parameters in 7–10-year-old children with impaired voluntary regulation of higher mental functions allowed us to prove the advisability of 20 sessions, as the increase in high-frequency activity and decrease in low-frequency activity do not stop with the 10th session. Changes in these parameters after 10 EEG biofeedback sessions are expressed mainly in the frontotemporal areas of both hemispheres, while after a course of 20 sessions, in both the frontotemporal and central parietal areas of the brain.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


Sign in / Sign up

Export Citation Format

Share Document