scholarly journals Large subunit ribulosebisphosphate carboxylase messenger RNA from Euglena chloroplasts.

1976 ◽  
Vol 73 (3) ◽  
pp. 722-726 ◽  
Author(s):  
D. Sagher ◽  
H. Grosfeld ◽  
M. Edelman
1996 ◽  
Vol 23 (2) ◽  
pp. 141 ◽  
Author(s):  
IE Woodrow ◽  
ME Kelly ◽  
KA Mott

A mechanistically-based model of light-mediated activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is developed. The model describes the kinetics of Rubisco activation following a relatively rapid increase in photon flux density (PPFD) from an initially low level. Underlying the model is the assumption that there are two slow processes that could potentially limit the rate of light-mediated Rubisco activation. These processes are the addition of the activator CO2 to the large subunit of Rubisco, which is accompanied by a conformational change in the enzyme (carbamylation), and activase-mediated removal of ribulose 1,5-bisphosphate from the inactive form of the enzyme. The contribution of these slow processes to the overall activation kinetics of Rubisco was resolved by measuring Rubisco activation in whole spinach leaves using non-steady-state CO2 exchange. It was found that when the change in PPFD was relatively small and a correspondingly small proportion of the Rubisco pool was activated, the kinetics of activation were highly sensitive to the intercellular CO2 concentration (ci). The apparent rate constant for activation under these conditions was found to be similar to that for the carbamylation of purified spinach Rubisco. When the change in PPFD and the proportion of Rubisco activated was relatively large, however, the kinetics of Rubisco activation were almost completely CO2 insensitive and were consistent with those of an enzyme-catalysed reaction. It is suggested that (1) CO2-insensitive activation reflects the operation of Rubisco activase and (2) the increasing CO2 sensitivity seen as the change in PPFD decreases reflects a transition to limitation by carbamylation.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2220
Author(s):  
Francesco Guarino ◽  
Oriana Motta ◽  
Mimmo Turano ◽  
Antonio Proto ◽  
Giovanni Vigliotta

Here we report the results obtained for a strain isolated from a polluted site and classified as Azospira sp. OGA 24. The capability of OGA 24 to utilize perchlorate and nitrate and the regulation of pathways were investigated by growth kinetic studies and analysis of messenger RNA (mRNA) expression of the genes of perchlorate reductase alpha subunit (pcrA), chlorite dismutase (cld), and periplasmic nitrate reductase large subunit (napA). In aerobic conditions and in a minimal medium containing 10 mM acetate as carbon source, 5.6 ± 0.34 mmol L−1 perchlorate or 9.7 ± 0.22 mmol L−1 nitrate were efficiently reduced during the growth with 10 mM of either perchlorate or nitrate. In anaerobiosis, napA was completely inhibited in the presence of perchlorate as the only electron acceptor, pcrA was barely detectable in nitrate-reducing conditions. The cell growth kinetics were in accordance with expression data, indicating a separation of nitrate and perchlorate respiration pathways. In the presence of both compounds, anaerobic nitrate consumption was reduced to 50% (4.9 ± 0.4 vs. 9.8 ± 0.15 mmol L−1 without perchlorate), while that of perchlorate was not affected (7.2 ± 0.5 vs. 6.9 ± 0.6 mmol L−1 without nitrate). Expression analysis confirmed the negative effect of perchlorate on nitrate respiration. Based on sequence analysis of the considered genes and 16S ribosomal gene (rDNA), the taxonomic position of Azospira sp. OGA 24 in the perchlorate respiring bacteria (PRB) group was further defined by classifying it in the oryzae species. The respiratory characteristics of OGA 24 strain make it very attractive in terms of potential applications in the bioremediation of environments exposed to perchlorate salts.


1981 ◽  
Vol 59 (4) ◽  
pp. 280-289 ◽  
Author(s):  
Norman P. A. Huner ◽  
Jiwan P. Palta ◽  
Paul H. Li ◽  
John V. Carter

A comparison of ribulosebisphosphate carboxylase–oxygenase from the leaves of the non-acclimated, cold-hardy species, Solanum commersonii, and the nonacclimated, nonhardy species, Solanum tuberosum showed that this enzyme from the two species differed in structure and function. The results of sulfhydryl group titration with 5,5′-dithiobis(2-nitrobenzoic acid) indicated that the kinetics of titration and the number of accessible sulfhydryl groups in the native enzymes were different. After 30 min, the enzyme from the hardy species had 1.7 times fewer sulfhydryl groups titrated than that from the nonhardy species. In the presence of 1% (w/v) sodium dodecyl sulfate, the total number of sulfhydryl groups titratable with 5,5′-dithiobis-(2-nitrobenzoic acid) was the same for both species. However, this denaturant had a differential effect on the kinetics of titration with 5,5′-dithiobis(2-nitrobenzoic acid). Both enzymes had a native molecular weight of about 550 000. The quaternary structures of the two enzymes were similar with the presence of large and small subunits of 54 000 and 14 000, respectively. However, there was more polypeptide of 108 000 – 110 000 present in preparations of the enzyme from S. tuberosum than from S. commersonii. This polypeptide is an apparent dimer of the large subunit on a relative mass basis. The large subunit of the enzyme from S. tuberosum was more sensitive to the absence of reducing agent and was more sensitive to freezing and thawing than the large subunit of the enzyme from S. commersonii. Catalytic properties of both enzymes at 5 and 25 °C indicated no significant difference in the [Formula: see text] at either temperature. However, the Vmax at 5 °C for the enzyme from S. commersonii was 35% higher than that of the enzyme from S. tuberosum. In contrast, the Vmax at 25 °C for the enzyme of the hardy species was 250% lower than that of the enzyme from the nonhardy species.


2008 ◽  
Vol 182 (4) ◽  
pp. 641-646 ◽  
Author(s):  
James Uniacke ◽  
William Zerges

Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the large, ribosomal subunit. In addition, mRNAs are in continuous flux between polysomes and cpSGs during stress. Localization of cpSGs within the pyrenoid reveals that this chloroplast compartment functions in this stress response. The large subunit of ribulosebisphosphate carboxylase/oxygenase also assembles into cpSGs and is known to bind mRNAs during oxidative stress, raising the possibility that it plays a role in cpSG assembly. This discovery within such an organelle suggests that mRNA localization to granules during stress is a more general phenomenon than currently realized.


Sign in / Sign up

Export Citation Format

Share Document