scholarly journals Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits.

1982 ◽  
Vol 79 (18) ◽  
pp. 5693-5697 ◽  
Author(s):  
T. Kita ◽  
M. S. Brown ◽  
D. W. Bilheimer ◽  
J. L. Goldstein
1986 ◽  
Vol 234 (2) ◽  
pp. 493-496 ◽  
Author(s):  
S Bhattacharya ◽  
S Balasubramaniam ◽  
L A Simons

The mechanism of regulation of plasma low-density-lipoprotein (LDL) metabolism in the rat was studied under a number of experimental conditions. LDL clearance and uptake in the liver was measured after intravenous pulse injection of [14C]sucrose-labelled LDL alone or in combination with reductively methylated [3H]sucrose-labelled LDL. Hyperthyroid rats showed a significant increase in fractional catabolic rate (FCR) and the proportion of LDL degraded in the liver, whereas the synthetic rate of LDL increased by 50%. Receptor-mediated clearance increased 2-fold. Hypothyroid rats showed a significant increase in LDL concentration. The FCR and proportion of LDL degraded in the liver were decreased significantly. Receptor-mediated clearance was also reduced. Cholesterol feeding increased chylomicron, very-low-density-and intermediate-density-lipoprotein cholesterol concentrations, but there was no change in the LDL concentration, FCR or the synthetic rate of LDL. Cholestyramine feeding did not induce changes in the kinetic parameters. These results indicate that, in the rat, the hepatic LDL-receptor pathway is under hormonal control, whereas cholesterol and cholestyramine feeding have no demonstrated effect on LDL metabolism.


1977 ◽  
Vol 53 (3) ◽  
pp. 221-226
Author(s):  
D. Reichl ◽  
N. B. Myant ◽  
J. J. Pflug ◽  
D. N. Rudra

1. The transport of apoprotein B from the lipoproteins of plasma into the lipoproteins of lymph draining the foot has been studied in four men with type III hyperlipoproteinaemia. 2. Three subjects were given autologous 125I-labelled very-low-density lipoprotein (VLDL) and 131I-labelled low-density lipoprotein (LDL) by intravenous injection; the fourth was given autologous 125I-labelled VLDL and 131I-labelled intermediate-density lipoprotein (IDL) plus LDL. 3. The 125I/131I ratios in serum and lymph apoprotein B, and the 125I and 131I specific radioactivities of apoprotein B in VLDL, IDL and LDL from serum and lymph, indicate that apoprotein B in the circulating VLDL can reach peripheral lymph without the intermediacy of circulating LDL.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Ozan Dikilitas ◽  
Benjamin A. Satterfield ◽  
Iftikhar J. Kullo

Background Atherosclerosis in >1 vascular bed (ie, polyvascular disease), often a feature of peripheral artery disease (PAD), is associated with high morbidity and mortality. We sought to identify risk factors for polyvascular involvement in patients with PAD. Methods and Results We performed 2‐sample Mendelian randomization using an inverse‐variance‐weighted approach, to assess 60 exposures including size and lipid content of atherogenic lipoproteins, blood pressure, glycated hemoglobin, and smoking as causal mediators for polyvascular disease in patients with PAD. Genetic instruments for these exposures were obtained from prior genome‐wide association studies. Patients with PAD were from the Mayo Vascular Disease Biorepository, and polyvascular disease (ie, concomitant coronary heart disease, cerebrovascular disease, and/or abdominal aortic aneurysm) was ascertained by validated phenotyping algorithms. Of 3279 patients with PAD, 61% had polyvascular disease. Genetically predicted levels of the lipid content and/or particle measures of very small and small size very low‐density lipoprotein, intermediate‐density lipoprotein, and large low‐density lipoprotein were associated with polyvascular disease: odds ratios (OR) of 1.80 (95% CI, 1.23–2.61), 1.70 (95% CI, 1.17–2.61), and 1.40 (95% CI, 1.09–1.80) per 1 SD increase in genetically determined levels, respectively. Both genetically predicted diastolic and systolic blood pressure were associated with polyvascular disease; OR per 10 mm Hg genetic increase in diastolic and systolic blood pressure were 1.66 (95% CI, 1.19–2.33) and 1.31 (95% CI, 1.07–1.60), respectively. Conclusions Lifetime exposure to increased lipid content and levels of very small and small very low‐density lipoprotein, intermediate‐density lipoprotein, and large low‐density lipoprotein particles as well as elevated blood pressure are associated with polyvascular involvement in patients with PAD. Reduction in levels of such exposures may limit progression of atherosclerosis in patients with PAD.


2000 ◽  
Vol 74 (21) ◽  
pp. 10055-10062 ◽  
Author(s):  
Sabina Wünschmann ◽  
Jheem D. Medh ◽  
Donna Klinzmann ◽  
Warren N. Schmidt ◽  
Jack T. Stapleton

ABSTRACT Hepatitis C virus (HCV) or HCV–low-density lipoprotein (LDL) complexes interact with the LDL receptor (LDLr) and the HCV envelope glycoprotein E2 interacts with CD81 in vitro. However, E2 interactions with LDLr and HCV interactions with CD81 have not been clearly described. Using sucrose gradient-purified low-density particles (1.03 to 1.07 g/cm3), intermediate-density particles (1.12 to 1.18 g/cm3), recombinant E2 protein, or control proteins, we assessed binding to MOLT-4 cells, foreskin fibroblasts, or LDLr-deficient foreskin fibroblasts at 4°C by flow cytometry and confocal microscopy. Viral entry was determined by measuring the coentry of α-sarcin, a protein synthesis inhibitor. We found that low-density HCV particles, but not intermediate-density HCV or controls bound to MOLT-4 cells and fibroblasts expressing the LDLr. Binding correlated with the extent of cellular LDLr expression and was inhibited by LDL but not by soluble CD81. In contrast, E2 binding was independent of LDLr expression and was inhibited by human soluble CD81 but not mouse soluble CD81 or LDL. Based on confocal microscopy, we found that low-density HCV particles and LDL colocalized on the cell surface. The addition of low-density HCV but not intermediate-density HCV particles to MOLT-4 cells allowed coentry of α-sarcin, indicating viral entry. The amount of viral entry also correlated with LDLr expression and was independent of the CD81 expression. Using a solid-phase immunoassay, recombinant E2 protein did not interact with LDL. Our data indicate that E2 binds CD81; however, virus particles utilize LDLr for binding and entry. The specific mechanism by which HCV particles interact with LDL or the LDLr remains unclear.


Sign in / Sign up

Export Citation Format

Share Document