scholarly journals Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene.

1988 ◽  
Vol 85 (21) ◽  
pp. 8017-8021 ◽  
Author(s):  
S. B. Ha ◽  
G. An
1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2020 ◽  
Vol 21 (17) ◽  
pp. 6438
Author(s):  
Miriam Führer ◽  
Angelika Gaidora ◽  
Peter Venhuizen ◽  
Jedrzej Dobrogojski ◽  
Chloé Béziat ◽  
...  

Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.


2017 ◽  
Vol 69 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Pavel Cherenkov ◽  
Daria Novikova ◽  
Nadya Omelyanchuk ◽  
Victor Levitsky ◽  
Ivo Grosse ◽  
...  

2008 ◽  
Vol 9 (7) ◽  
pp. R112 ◽  
Author(s):  
Sascha Laubinger ◽  
Georg Zeller ◽  
Stefan R Henz ◽  
Timo Sachsenberg ◽  
Christian K Widmer ◽  
...  

1994 ◽  
Vol 14 (8) ◽  
pp. 5056-5065 ◽  
Author(s):  
J D Molkentin ◽  
B E Markham

Cardiac muscle-restricted expression of the alpha-myosin heavy-chain (alpha-MHC) gene is regulated by multiple elements in the proximal enhancer/promoter. Within this region, an M-CAT site and an A-rich site were identified as potential regulatory elements. Site-specific mutations in each site, individually, reduced activity from the wild-type promoter by approximately 85% in the adult rat heart, demonstrating that these sites were positive regulatory elements. alpha-MHC, beta-MHC, and chicken cardiac troponin T (cTnT) M-CAT sites interacted with an M-CAT-binding factor (MCBF) from rat heart nuclear extracts that was immunologically related to transcriptional enhancer factor 1, a factor that binds within the simian virus 40 enhancer. The factor that bound the A-rich region (ARF) was antigenically related to the RSRF family of proteins, ARF was distinct from myocyte-specific enhancer factor 2 (MEF-2) on the basis of DNA-binding specificity and developmental expression. Like MEF-2, ARF DNA-binding activity was present in the heart and brain; however, no ARF activity was detected in extracts from skeletal muscle or C2C12 myotubes. MCBF and ARF DNA-binding activities were developmentally regulated with peak levels in the 1- to 2-day neonatal heart. The activity of both factors increased nearly fivefold in adult rat hearts subjected to a pressure overload. By comparison, the levels of alpha-MHC binding factor 2 did not change during hypertrophy. Binding sites for MCBF and ARF are present in several genes that are upregulated during cardiac hypertrophy. Our results suggest that these factors participate in the alterations in gene expression that occur during cardiac development and hypertrophy.


2008 ◽  
Vol 294 (6) ◽  
pp. L1094-L1101 ◽  
Author(s):  
Paul R. Reynolds ◽  
Stephen D. Kasteler ◽  
Manuel G. Cosio ◽  
Anne Sturrock ◽  
Tom Huecksteadt ◽  
...  

The receptor for advanced glycation end-products (RAGE) is a member of the immunoglobin superfamily of multiligand receptors. Following ligand binding, mechanisms associated with host defense, tissue remodeling, and inflammation are activated. RAGE is highly expressed in pulmonary epithelium transitioning from alveolar type (AT) II to ATI cells and is upregulated in the presence of ligand; however, the regulation and function of RAGE during development are less clear. Herein, immunohistochemistry demonstrated a temporal-spatial pattern of RAGE expression in pulmonary epithelial cells from embryonic day 17.5 to postnatal day 10. Cotransfection experiments revealed that the mouse RAGE promoter was activated by early growth response gene 1 (Egr-1) and inhibited by thyroid transcription factor-1 (TTF-1) via interaction with specific regulatory elements. A rat ATI cell line (R3/1) with endogenous RAGE expression also differentially regulated RAGE when transfected with TTF-1 or Egr-1. Because Egr-1 is markedly induced in pulmonary epithelial cells exposed to cigarette smoke extract (CSE; Reynolds PR, Hoidal JR. Am J Respir Cell Mol Biol 35: 314–319, 2006.), we sought to investigate RAGE induction by CSE. Employing RT-PCR and Western blotting, RAGE and common ligands (amphoterin and S100A12) were upregulated in epithelial (R3/1 and A549) and macrophage (RAW) cell lines following exposure to CSE. Immunostaining for RAGE in cells similarly exposed and in lungs from mice exposed to cigarette smoke for 6 mo revealed elevated RAGE expression in pulmonary epithelium. After the addition of glyoxylated BSA, an advanced glycation end-product that binds RAGE, real-time RT-PCR detected a 200-fold increase in Egr-1. These results indicate that Egr-1 regulates RAGE expression during development and the likelihood of positive feedback involving Egr-1 and RAGE in cigarette smoke-related disease.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12480
Author(s):  
Xiaowei Jia ◽  
Xuyang Si ◽  
Yangyang Jia ◽  
Hongyan Zhang ◽  
Shijun Tian ◽  
...  

The inositol phospholipid signaling system mediates plant growth, development, and responses to adverse conditions. Diacylglycerol kinase (DGK) is one of the key enzymes in the phosphoinositide-cycle (PI-cycle), which catalyzes the phosphorylation of diacylglycerol (DAG) to form phosphatidic acid (PA). To date, comprehensive genomic and functional analyses of DGKs have not been reported in wheat. In this study, 24 DGK gene family members from the wheat genome (TaDGKs) were identified and analyzed. Each putative protein was found to consist of a DGK catalytic domain and an accessory domain. The analyses of phylogenetic and gene structure analyses revealed that each TaDGK gene could be grouped into clusters I, II, or III. In each phylogenetic subgroup, the TaDGKs demonstrated high conservation of functional domains, for example, of gene structure and amino acid sequences. Four coding sequences were then cloned from Chinese Spring wheat. Expression analysis of these four genes revealed that each had a unique spatial and developmental expression pattern, indicating their functional diversification across wheat growth and development processes. Additionally, TaDGKs were also prominently up-regulated under salt and drought stresses, suggesting their possible roles in dealing with adverse environmental conditions. Further cis-regulatory elements analysis elucidated transcriptional regulation and potential biological functions. These results provide valuable information for understanding the putative functions of DGKs in wheat and support deeper functional analysis of this pivotal gene family. The 24 TaDGKs identified and analyzed in this study provide a strong foundation for further exploration of the biological function and regulatory mechanisms of TaDGKs in response to environmental stimuli.


Sign in / Sign up

Export Citation Format

Share Document