scholarly journals Insulin, oxytocin, and vasopressin stimulate protein kinase C activity in adipocyte plasma membranes.

1990 ◽  
Vol 87 (3) ◽  
pp. 1052-1056 ◽  
Author(s):  
J. J. Egan ◽  
J. Saltis ◽  
S. A. Wek ◽  
I. A. Simpson ◽  
C. Londos
Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 597-604
Author(s):  
R.L. Varnold ◽  
L.D. Smith

Though progesterone-induced maturation has been studied extensively in Xenopus oocytes, the mechanism whereby the prophase block arrest is released is not well understood. The current hypothesis suggests that a reduction in cAMP and subsequent inactivation of cAMP-dependent protein kinase is responsible for reentry into the cell cycle. However, several lines of evidence indicate that maturation can be induced without a concomitant reduction in cAMP. We show that the mass of diacylglycerol in whole oocytes and plasma membranes decreases 29% and 10% respectively, within the first 15 sec after the addition of progesterone. Diacylglycerol in plasma membranes further decreased 59% by 5 min. We also show that the protein kinase C inhibitors sphingosine and staurosporine can induce oocyte maturation. In addition, the synthetic diglyceride, DiC8, and microinjected PKC can inhibit or delay progesterone-induced maturation. These results together suggest that a transient decrease in protein kinase C activity may regulate entry into the cell cycle. The mechanism whereby DAG is decreased in response to progesterone is unclear. Initial studies show that progesterone leads to a decrease in IP3 suggesting that progesterone may act by reducing the hydrolysis of PIP2. On the other hand, progesterone caused a decrease in the amount of [3H]arachidonate labelling in DAG during the same time suggesting that progesterone may stimulate lipase activity. The relationship between postulated changes in the PKC pathway and those hypothesized for the PKA pathway are discussed.


1992 ◽  
Vol 70 (7) ◽  
pp. 613-616 ◽  
Author(s):  
Mariana N. Nikolova-Karakashian ◽  
Nadja J. Gavrilova ◽  
Diana H. Petkova ◽  
Milka S. Setchenska

The effect of cholesterol-supplemented diet on the activities of rat liver plasma membrane sphingomyelin-metabolizing enzymes and protein kinase C was studied. Protein kinase C, phosphatidylcholine:ceramide-phosphocholine transferase, and phosphatidylethanolamine:ceramide-phosphoethanolamine transferase activities were found to increase continuously and almost in parallel during the experimental period on cholesterol diet (days 10, 20, and 30). Linear regression analysis showed a positive correlation between these activities with correlation coefficients r = 0.959 for protein kinase C and phosphatidylcholine:ceramide-phosphocholine transferase, and r = 0.998 for protein kinase C and phosphatidylethanolamine:ceramide-phosphoethanolamine transferase. On the other hand, protein kinase C activation does not correspond to sphingomyelinase activity changes. These data suggest that protein kinase C activation observed in cholesterol-enriched plasma membranes is due to increased production of diacylglycerol and increased acylation of sphingosine to ceramide.Key words: protein kinase C, sphingomyelin-metabolizing enzymes, cholesterol, plasma membranes.


1990 ◽  
Vol 122 (3) ◽  
pp. 403-408
Author(s):  
Ph. Touraine ◽  
P. Birman ◽  
F. Bai-Grenier ◽  
C. Dubray ◽  
F. Peillon ◽  
...  

Abstract In order to investigate whether a calcium channel blocker could modulate the protein kinase C activity in normal and estradiol pretreated rat pituitary, female Wistar rats were treated or not (controls) with ± PN 200-110 (3 mg · kg−1 · day−1, sc) for 8 days or with estradiol cervical implants for 8 or 15 days, alone or in combination with PN 200-110 the last 8 days. Estradiol treatment induced a significant increase in plasma prolactin levels and pituitary weight. PN 200-110 administered to normal rats did not modify these parameters, whereas it reduced the effects of the 15 days estradiol treatment on prolactin levels (53.1 ± 4.9 vs 95.0 ±9.1 μg/l, p<0.0001) and pituitary weight (19.9 ± 0.4 vs 23.0 ± 0.6 mg, p <0.001), to values statistically comparable to those measured after 8 days of estradiol treatment. PN 200-110 alone did not induce any change in protein kinase C activity as compared with controls. In contrast, PN 200-110 treatment significantly counteracted the large increase in soluble activity and the decrease in the particulate one induced by estradiol between day 8 and day 15. We conclude that PN 200-110 opposed the stimulatory effects of chronic in vivo estradiol treatment on plasma prolactin levels and pituitary weight and that this regulation was related to a concomitant modulation of the protein kinase C activity.


1990 ◽  
Vol 2 (10) ◽  
pp. 333-338 ◽  
Author(s):  
Pascal Breton ◽  
Amha Asseffa ◽  
Krzysztof Grzegorzewski ◽  
Steven K. Akiyama ◽  
Sandra L. White ◽  
...  

1988 ◽  
Vol 254 (1) ◽  
pp. E63-E70 ◽  
Author(s):  
J. J. Morrissey

The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low (0.5 mM) or high (2.0 mM) concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. At low calcium, the secretory rate averaged 32 +/- 3.8 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA did not affect secretion. At high calcium there was a significant suppression of secretion by 38% to 19.8 +/- 3 ng.h-1.(10(5) cells)-1. The addition of 1.6 microM PMA significantly stimulated hormone secretion to 35.8 +/- 8 ng.h-1.(10(5) cells)-1, a rate indistinguishable from low calcium. This stimulatory effect of PMA at high calcium was seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4 alpha-isomer of phorbol ester, and was independent of changes in cellular adenosine 3',5'-cyclic monophosphate levels. Examination of 32P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of approximately 20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 microM PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document