scholarly journals Sea urchin early histone H2A modulator binding factor 1 is a positive transcription factor also for the early histone H3 gene.

1993 ◽  
Vol 90 (14) ◽  
pp. 6854-6858 ◽  
Author(s):  
F. Palla ◽  
C. Bonura ◽  
L. Anello ◽  
C. Casano ◽  
M. Ciaccio ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A31-A31
Author(s):  
H KATAOKA ◽  
T JOH ◽  
T OHSHIMA ◽  
Y ITOH ◽  
K SENOO ◽  
...  

2016 ◽  
Vol 90 (11) ◽  
pp. 5353-5367 ◽  
Author(s):  
Jayaraju Dheekollu ◽  
Andreas Wiedmer ◽  
Daniel Sentana-Lledo ◽  
Joel Cassel ◽  
Troy Messick ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixed-lineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependent C promoter (Cp) and Q promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt's lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation.IMPORTANCEEBV latency is associated with several human cancers. Viral latent cycle gene expression is regulated by the epigenetic control of the OriP enhancer region. Here, we show that cellular factors OCT2 and HCF1 bind OriP in association with EBNA1 to maintain elevated histone H3K4me3 and transcriptional enhancer function. HCF1 is known as a transcriptional coactivator of herpes simplex virus (HSV) immediate early (IE) transcription, suggesting that OriP enhancer shares aspects of HSV IE transcription control.


2004 ◽  
Vol 384 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Heiner KOESSLER ◽  
Joerg KAHLE ◽  
Christa BODE ◽  
Detlef DOENECKE ◽  
Werner ALBIG

We have analysed the transcriptional regulation of the human histone H3 genes using promoter deletion series, scanning mutagenesis, specific mutagenesis and electrophoretic mobility-shift assay experiments. The promoters of five of the six examined histone H3 genes showed near-maximal activity at lengths of 133–227 bp: H3/d 198 bp, H3/h 147 bp, H3/k 133 bp, H3/m 227 bp, H3/n 140 bp (exception H3/i). To search for functional cis-elements within these regions, we performed scanning mutagenesis of the two histone H3 promoters H3/k and H3/m. Mutagenesis revealed that the functional framework of the histone H3 promoters consists of a TATA box and two tandemly arranged CCAAT boxes in relatively fixed positions. Alterations of the distance between the CCAAT boxes and of the distance between the CCAAT boxes and the TATA box resulted in significant loss of activity. In electrophoretic mobility-shift assay experiments, the factor CBF (CCAAT-binding factor)/NF-Y (nuclear factor-Y) bound to isolated CCAAT boxes of the H3/k promoter. This suggests that an initiation complex is formed on the histone H3 promoter that has a defined structure and limited flexibility, consisting of two molecules of CBF/NF-Y and further (general or specific) transcription factors.


2018 ◽  
Vol 294 (5) ◽  
pp. 1437-1450 ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

The inner centromere region of a mitotic chromosome critically regulates sister chromatid cohesion and kinetochore–microtubule attachments. However, the molecular mechanism underlying inner centromere assembly remains elusive. Here, using CRISPR/Cas9-based gene editing in HeLa cells, we disrupted the interaction of Shugoshin 1 (Sgo1) with histone H2A phosphorylated on Thr-120 (H2ApT120) to selectively release Sgo1 from mitotic centromeres. Interestingly, cells expressing the H2ApT120-binding defective mutant of Sgo1 have an elevated rate of chromosome missegregation accompanied by weakened centromeric cohesion and decreased centromere accumulation of the chromosomal passenger complex (CPC), an integral part of the inner centromere and a key player in the correction of erroneous kinetochore–microtubule attachments. When artificially tethered to centromeres, a Sgo1 mutant defective in binding protein phosphatase 2A (PP2A) is not able to support proper centromeric cohesion and CPC accumulation, indicating that the Sgo1–PP2A interaction is essential for the integrity of mitotic centromeres. We further provide evidence indicating that Sgo1 protects centromeric cohesin to create a binding site for the histone H3–associated protein kinase Haspin, which not only inhibits the cohesin release factor Wapl and thereby strengthens centromeric cohesion but also phosphorylates histone H3 at Thr-3 to position CPC at inner centromeres. Taken together, our findings reveal a positive feedback–based mechanism that ensures proper assembly of the functional inner centromere during mitosis. They further suggest a causal link between centromeric cohesion defects and chromosomal instability in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document