scholarly journals Direct Binding of the Proline-rich Region of Protein Tyrosine Phosphatase 1B to the Src Homology 3 Domain of p130Cas

1996 ◽  
Vol 271 (49) ◽  
pp. 31290-31295 ◽  
Author(s):  
Feng Liu ◽  
David E. Hill ◽  
Jonathan Chernoff
2002 ◽  
Vol 364 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Shrikrishna DADKE ◽  
Jonathan CHERNOFF

We have shown previously that protein tyrosine phosphatase (PTP) 1B interacts with insulin receptor and negatively regulates insulin signalling by an N-terminal binding domain [Dadke, Kusari and Chernoff (2000) J. Biol. Chem. 275, 23642–23647] and it also negatively regulates integrin signalling through a proline-rich region present in the C-terminus [Liu, Hill and Chernoff (1996) J. Biol. Chem. 271, 31290–31295; Liu, Sells and Chernoff (1998) Curr. Biol. 8, 173–176]. Here we show that PTP1B mutants that are defective in Src homology 3 domain binding fully retain the ability to inhibit insulin signalling, whereas mutants defective in insulin-receptor binding fully retain the ability to inhibit integrin signalling. In contrast, both the C-terminal proline-rich region and the tandem tyrosine residues present in the N-terminal region are required for the activation of Src family kinases. These data show that PTP1B can independently regulate insulin and integrin signals, and that Src might represent a convergence point for regulating signal transduction by this phosphatase.


1997 ◽  
Vol 272 (17) ◽  
pp. 11629-11635 ◽  
Author(s):  
Patricia M. Okamoto ◽  
Jonathan S. Herskovits ◽  
Richard B. Vallee

2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document