scholarly journals Analysis of Human Breast Adenocarcinoma MCF7 Resistance to Tumor Necrosis Factor-induced Cell Death

1998 ◽  
Vol 273 (44) ◽  
pp. 29002-29008 ◽  
Author(s):  
Maya Ameyar ◽  
Azeddine Atfi ◽  
Zhenzi Cai ◽  
Rodica Stancou ◽  
Vladimir Shatrov ◽  
...  
2004 ◽  
Vol 64 (2) ◽  
pp. 719-727 ◽  
Author(s):  
Maryam Diarra-Mehrpour ◽  
Samuel Arrabal ◽  
Abdelali Jalil ◽  
Xavier Pinson ◽  
Catherine Gaudin ◽  
...  

1997 ◽  
Vol 272 (48) ◽  
pp. 30167-30177 ◽  
Author(s):  
José A. Sánchez-Alcázar ◽  
Jesús Ruı́z-Cabello ◽  
Inmaculada Hernández-Muñoz ◽  
Pilar Sánchez Pobre ◽  
Paz de la Torre ◽  
...  

1996 ◽  
Vol 183 (2) ◽  
pp. 669-674 ◽  
Author(s):  
S Y Lee ◽  
C G Park ◽  
Y Choi

CD30 is a member of the tumor necrosis factor superfamily and a surface marker for Hodgkin's disease. Normal activated T cells and several virally transformed T or B cell lines also show CD30 expression. The interaction of CD30 with its ligand induces cell death or proliferation, depending on the cell type. In this report we characterize the signals mediated by the intracellular domain of CD30 and show that, in combination with signal(s) transduced by the T cell receptor, the multimerization of CD30 cytoplasmic domain induces Fas(CD95)-independent cell death in T cell hybridomas. Deletion analysis shows that the COOH-terminal 66 amino acids of CD30 are required to induce cell death. Using the yeast two-hybrid system, we have identified that the same region of CD30 interacts with tumor necrosis factor receptor-associated factor (TRAF)1 and TRAF2. These results indicate that TRAF1 and/or TRAF2 play an important role in cell death in addition to their previously identified roles in cell proliferation.


2003 ◽  
Vol 77 (12) ◽  
pp. 6700-6708 ◽  
Author(s):  
Yida Yang ◽  
Ilia Tikhonov ◽  
Tracy J. Ruckwardt ◽  
Mahmoud Djavani ◽  
Juan Carlos Zapata ◽  
...  

ABSTRACT The human immunodeficiency virus (HIV) Tat protein has a critical role in viral transcription, but this study focuses on its additional role as an extracellular effector of lymphocyte cell death. It is well known that Tat induces tumor necrosis factor-related apoptosis-induced ligand (TRAIL) in peripheral blood mononuclear cells (PBMC), and we show that the majority of TRAIL is produced by the monocyte subset of PBMC. Human monocytes and U937 monoblastoid cells did not take up soluble HIV Tat-86, as T cells did, yet produced more TRAIL than did T cells. TRAIL secretion was induced by Tat and by a cysteine-rich peptide of Tat but not by sulfhydryl-modified Tat toxoid. Although there was only a slight increase in cell surface expression of TRAIL on monocytes, sufficient TRAIL was secreted to be toxic for T cells. The cytotoxicity of Tat-stimulated monocyte medium could be blocked by a TRAIL-neutralizing antibody. T cells treated with Tat did not secrete enough TRAIL to mediate cell death in our assay. Remarkably, uninfected T cells are more susceptible to TRAIL than are HIV-infected T cells. The production of TRAIL by Tat-stimulated monocytes provides a mechanism by which HIV infection can destroy uninfected bystander cells.


1998 ◽  
Vol 187 (7) ◽  
pp. 1069-1079 ◽  
Author(s):  
Klaus Ruckdeschel ◽  
Suzanne Harb ◽  
Andreas Roggenkamp ◽  
Mathias Hornef ◽  
Robert Zumbihl ◽  
...  

In this study, we investigated the activity of transcription factor NF-κB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-κB signal, Y. enterocolitica inhibited NF-κB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IκB-α and IκB-β observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-κB and to suppress the tumor necrosis factor α (TNF-α) production as well as to trigger macrophage apoptosis. When NF-κB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-α secretion. Y. enterocolitica also impaired the activity of NF-κB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-α could induce HeLa cell apoptosis alone, TNF-α provoked apoptosis when activation of NF-κB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-κB, which inhibits TNF-α release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.


Sign in / Sign up

Export Citation Format

Share Document