scholarly journals Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice.

2013 ◽  
Vol 288 (32) ◽  
pp. 23432-23432
Author(s):  
Heeseog Kang ◽  
Benoit Viollet ◽  
Dianqing Wu
2018 ◽  
Vol 503 (3) ◽  
pp. 1955-1961
Author(s):  
Ippei Kanazawa ◽  
Ayumu Takeno ◽  
Ken-ichiro Tanaka ◽  
Masakazu Notsu ◽  
Toshitsugu Sugimoto

2020 ◽  
Author(s):  
Nicholas D. LeBlond ◽  
Peyman Ghorbani ◽  
Conor O’Dwyer ◽  
Nia Ambursley ◽  
Julia R. C. Nunes ◽  
...  

AbstractObjectiveThe dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis.Approach and ResultsWe aimed to clarify the role of myeloid-specific AMPK signaling by using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), in male and female mice made acutely atherosclerotic by PCSK9-AAV and Western diet-feeding. After 6 weeks of Western diet feeding, half received daily injection of either the AMPK activator, A-769662 or a vehicle control for a further 6 weeks. After 12 weeks, myeloid cell populations were not different between genotype or sex. Similarly, aortic sinus plaque size, lipid staining and necrotic area were not different in male and female MacKO mice compared to their littermate floxed controls. Moreover, therapeutic intervention with A-769662 had no effect. There were no differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area or markers of autophagy showed no effect of either lacking AMPK signaling or systemic AMPK activation.ConclusionsOur data suggest that while defined roles for each catalytic AMPK subunit have been identified, global deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Moreover, we show that intervention with the first-generation AMPK activator, A-769662, was not able to stem the progression of atherosclerosis.Highlights- The deletion of both catalytic subunits of AMPK in myeloid cells has no significant effect on the progression of atherosclerosis in either male or female mice- Therapeutic delivery of a first-generation AMPK activator (A-769662) for the last 6 weeks of 12-week study had no beneficial effect in either male or female mice- Studying total AMPK deletion may mask specific effects of each isoform and highlights the need for targeted disruption of AMPK phosphorylation sites via knock-in mutations, rather than the traditional “sledgehammer” knockout approach


Shock ◽  
2019 ◽  
Vol 52 (5) ◽  
pp. 540-549 ◽  
Author(s):  
Laura Kitzmiller ◽  
John R. Ledford ◽  
Paul W. Hake ◽  
Michael O’Connor ◽  
Giovanna Piraino ◽  
...  

Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S44
Author(s):  
M. Shah⁎ ◽  
A. Bataveljic ◽  
T.R. Arnett ◽  
B. Viollet ◽  
L.K. Saxon ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9545
Author(s):  
Rubén Darío Castro-Torres ◽  
Jordi Olloquequi ◽  
Miren Etchetto ◽  
Pablo Caruana ◽  
Luke Steele ◽  
...  

(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/−), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/−), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7–JNK pathway has a role in adult neurogenic activity.


2020 ◽  
Vol 92 (11) ◽  
pp. 7382-7387 ◽  
Author(s):  
Tin Tin Manh Nguyen ◽  
Yong Jin An ◽  
Jin Wook Cha ◽  
Yoon-Joo Ko ◽  
Hanee Lee ◽  
...  

2018 ◽  
Vol 315 (4) ◽  
pp. H826-H837 ◽  
Author(s):  
Yu Inata ◽  
Giovanna Piraino ◽  
Paul W. Hake ◽  
Michael O’Connor ◽  
Patrick Lahni ◽  
...  

Age represents a major risk factor for multiple organ failure, including cardiac dysfunction, in patients with sepsis. AMP-activated protein kinase (AMPK) is a crucial regulator of energy homeostasis that controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-1α and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation contributes to age-dependent cardiac injury in young (2–3 mo) and mature adult (11–13 mo) male mice subjected to sepsis by cecal ligation and puncture and whether AMPK activation by 5-amino-4-imidazole carboxamide riboside affords cardioprotective effects. Plasma proinflammatory cytokines and myokine follistatin were similarly elevated in vehicle-treated young and mature adult mice at 18 h after sepsis. However, despite equivalent troponin I and T levels compared with similarly treated young mice, vehicle-treated mature adult mice exhibited more severe cardiac damage by light and electron microscopy analyses with more marked intercellular edema, inflammatory cell infiltration, and mitochondrial derangement. Echocardiography revealed that vehicle-treated young mice exhibited left ventricular dysfunction after sepsis, whereas mature adult mice exhibited a reduction in stroke volume without apparent changes in load-dependent indexes of cardiac function. At molecular analysis, phosphorylation of the catalytic subunits AMPK-α1/α2 was associated with nuclear translocation of peroxisome proliferator-activated receptor-γ coactivator-1α in vehicle-treated young but not mature adult mice. Treatment with 5-amino-4-imidazole carboxamide riboside ameliorated cardiac architecture derangement in mice of both ages. These cardioprotective effects were associated with attenuation of the systemic inflammatory response and amelioration of cardiac dysfunction in young mice only, not in mature adult animals. NEW & NOTEWORTHY Our data suggest that sepsis-induced cardiac dysfunction manifests with age-dependent characteristics, which are associated with a distinct regulation of AMP-activated protein kinase-dependent metabolic pathways. Consistent with this age-related deterioration, pharmacological activation of AMP-activated protein kinase may afford cardioprotective effects allowing a partial recovery of cardiac function in young but not mature age.


Sign in / Sign up

Export Citation Format

Share Document