scholarly journals Gαs directly drives PDZ-RhoGEF signaling to Cdc42

2020 ◽  
Vol 295 (50) ◽  
pp. 16920-16928 ◽  
Author(s):  
Alejandro Castillo-Kauil ◽  
Irving García-Jiménez ◽  
Rodolfo Daniel Cervantes-Villagrana ◽  
Sendi Rafael Adame-García ◽  
Yarely Mabell Beltrán-Navarro ◽  
...  

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.

2017 ◽  
Author(s):  
Rosa Catalano ◽  
Erika Peverelli ◽  
Elena Giardino ◽  
Donatella Treppiedi ◽  
Valentina Morelli ◽  
...  

1998 ◽  
Vol 66 (11) ◽  
pp. 5527-5533 ◽  
Author(s):  
Sonia Meconi ◽  
Véronique Jacomo ◽  
Patrice Boquet ◽  
Didier Raoult ◽  
Jean-Louis Mege ◽  
...  

ABSTRACT Coxiella burnetii, an obligate intracellular bacterium which survives in myeloid cells, causes Q fever in humans. We previously demonstrated that virulent C. burnetiiorganisms are poorly internalized by monocytes compared to avirulent variants. We hypothesized that a differential mobilization of the actin cytoskeleton may account for this distinct phagocytic behavior. Scanning electron microscopy demonstrated that virulent C. burnetii stimulated profound and polymorphic changes in the morphology of THP-1 monocytes, consisting of membrane protrusions and polarized projections. These changes were transient, requiring 5 min to reach their maximum extent and vanishing after 60 min of incubation. In contrast, avirulent variants of C. burnetii did not induce any significant changes in cell morphology. The distribution of filamentous actin (F-actin) was then studied with a specific probe, bodipy phallacidin. Virulent C. burnetii induced a profound and transient reorganization of F-actin, accompanied by an increase in the F-actin content of THP-1 cells. F-actin was colocalized with myosin in cell protrusions, suggesting that actin polymerization and the tension of actin-myosin filaments play a role in C. burnetii-induced morphological changes. In addition, contact between the cell and the bacterium seems to be necessary to induce cytoskeleton reorganization. Bacterial supernatants did not stimulate actin remodeling, and virulent C. burnetii organisms were found in close apposition with F-actin protrusions. The manipulation of the actin cytoskeleton by C. burnetiimay therefore play a critical role in the internalization strategy of this bacterium.


2019 ◽  
Vol 16 (2) ◽  
pp. 183-189
Author(s):  
Y. M. Nemesh ◽  
S. V. Kropyvko

Aim. TKS5 is a key scaffold protein of invadopodia. In its absence, the cells completely lose the ability to form invadopodia. This fact makes TKS5 a potential target for cancer cure and one of the central proteins in the investigation of cancer cell invasion. Additionally, the question remains about the function of TKS5 in normal cells. Therefore, in order to extend knowledge about TKS5 role in healthy and invasive cells, we tested the TKS5 interaction with the proteins involved in signal transduction: PLCγ1, SRC, CRK, CSK; the proteins involved in plasma membrane remodeling: AMPH1, BIN1, CIN85, ITSN1, ITSN2; the protein involved in the actin cytoskeleton rearrangement: CTTN. Methods. We used the GST Pull-down assay to identify the protein-protein interaction. Results. We revealed that TKS5 SH3 domains interact with CIN85. There were identified TKS5 interactions with SH3 domains of CTTN, ITSN1, ITSN2, AMPH1 and BIN1. Conclusions. TKS5 interacts with CIN85, CTTN, ITSN1, ITSN2, AMPH1 and BIN1, which take part in membrane remodeling, endo-/exocytosis and actin cytoskeleton rearrangement. Keywords: TKS5, scaffold proteins, actin cytoskeleton, plasma membrane.


2015 ◽  
Vol 29 (1) ◽  
pp. 25
Author(s):  
Agnieszka Glińska ◽  
Magdalena Izdebska ◽  
Marta Hałas ◽  
Anna Klimaszewska-Wiśniewska ◽  
Alina Grzanka

2009 ◽  
Vol 66 (4) ◽  
pp. 193-201 ◽  
Author(s):  
Christian Schulze ◽  
Karla Müller ◽  
Josef A. Käs ◽  
Jens C. Gerdelmann

2000 ◽  
Vol 6 (4) ◽  
pp. 303-319 ◽  
Author(s):  
Evangelia A. Papakonstanti ◽  
Dimitrios S. Emmanouel ◽  
Achille Gravanis ◽  
Christos Stournaras

Sign in / Sign up

Export Citation Format

Share Document