h1299 cell
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 25)

H-INDEX

5
(FIVE YEARS 2)

2022 ◽  
Vol 12 (4) ◽  
pp. 701-710
Author(s):  
Ming Liu ◽  
Shenghu Guo ◽  
Jing Cao ◽  
Zheng Wu ◽  
Lei Zhang ◽  
...  

Objective: Our research was to discuss effects and mechanism of lncRNA TUG1 in NSCLC by vitro study. Methods: A549 and H1299 cells were divided into NC, pcDNA 3.1 and lncRNA TUG1 groups. Measuring cell proliferation using CCK-8 assay, cell apoptosis by flow cytometry, invasion cell number by transwell and wound healing rate by wound healing assay. Relative gene and protein expressions by RT-qPCR and WB assay. Results: Compared with NC group, the cell proliferation rate, invasion cell number and wound healing rate were significantly depressed in A549 and H1299 cell lines (P < 0.001, respectively). By RT-qPCR and WB assay, lncRNA TUG1 gene expression were significantly increased (P < 0.001, respectively); E-cadherin gene and protein expression were significantly up-regulation, and N-cadherin and Vimentin gene and protein expressions were significantly depressed compared with those of NC group in A549 and H1299 cell lines (P < 0.001, respectively). Conclusion: lncRNA TUG1 had effects to suppress NSCLC cell biological activities by regulation EMT relative gene and proteins expression in vivo study.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Eric J. O’Neill ◽  
Jessy Moore ◽  
Joon Song ◽  
Evangelia Litsa Tsiani

Non-small cell lung cancer (NSCLC) represents an aggressive form of lung cancer which often develops resistance to chemo- and radiotherapy emphasizing a need to identify novel treatment agents to combat it. Many plants contain compounds with anti-inflammatory, antimicrobial, antidiabetic, and anticancer properties and some plant-derived chemicals are used in the treatment of cancer. A limited number of in vitro and in vivo animal studies provide evidence of anticancer effects of rosemary (Rosmarinus officinalis) extract (RE); however, no studies have explored its role in H1299 NSCLC cells, and its underlying mechanism(s) of action are not understood. The current study examined the effects of RE on H1299 cell proliferation, survival, and migration using specific assays. Additionally, immunoblotting was used to investigate the effects of RE treatment on signalling molecules implicated in cell growth and survival. Treatment with RE dose-dependently inhibited H1299 proliferation with an IC50 value of 19 µg/mL. Similarly, RE dose-dependently reduced cell survival, and this reduction correlated with increased levels of cleaved poly (ADP-ribose) polymerase (PARP), a marker of apoptosis. RE was also able to inhibit cell migration as assessed with a wound healing assay. These cellular effects of RE were associated with an increase in phosphorylated levels of extracellular signal-regulated kinase (ERK), AMP-activated protein kinase (AMPK), and its downstream targets ACC, the mTORC1 protein raptor, and decreased p70S6K phosphorylation. More studies are required to fully examine the effects of RE against NSCLC.


Epigenomics ◽  
2021 ◽  
Author(s):  
Hongxia Li ◽  
Weili Yang ◽  
Meiying Zhang ◽  
Tao He ◽  
Fuyou Zhou ◽  
...  

Aim: The role of TMEM176A methylation in lung cancer and its therapeutic application remains unclear. Materials and methods: Nine lung cancer cell lines and 123 cases of cancer tissue samples were employed. Results: TMEM176A was methylated in 53.66% of primary lung cancer. Restoration of TMEM176A expression induced cell apoptosis and G2/M phase arrest, and inhibited colony formation, cell proliferation, migration and invasion. TMEM176A suppressed H1299 cell xenograft growth in mice. Methylation of TMEM176A activated ERK signaling and sensitized H1299 and H23 cells to AZD0156, an ATM inhibitor. Conclusion: The expression of TMEM176A is regulated by promoter region methylation. Methylation of TMEM176A is a potential lung cancer diagnostic marker and a novel synthetic lethal therapeutic marker for AZD0156.


2021 ◽  
Vol 22 (18) ◽  
pp. 9685
Author(s):  
Ujjwala Karmacharya ◽  
Diwakar Guragain ◽  
Prakash Chaudhary ◽  
Jun-Goo Jee ◽  
Jung-Ae Kim ◽  
...  

Two novel bioisosteres of cabozantinib, 3 and 4, were designed and synthesized. The benzene ring in the center of the cabozantinib structure was replaced by trimethylpyridine (3) and pyridine (4), respectively. Surprisingly, the two compounds showed extremely contrasting mesenchymal–epithelial transition factor (c-Met) inhibitory activities at 1 μM concentration (4% inhibition of 3 vs. 94% inhibition of 4). The IC50 value of compound 4 was 4.9 nM, similar to that of cabozantinib (5.4 nM). A ligand-based docking study suggested that 4 includes the preferred conformation for the binding to c-Met in the conformational ensemble, but 3 does not. The anti-proliferative activity of compound 4 against hepatocellular carcinoma (Hep3B and Huh7) and non-small-cell lung cancer (A549 and H1299) cell lines was better than that of cabozantinib, whereas 3 did not show a significant anti-proliferative activity. Moreover, the tumor selectivity of compound 4 toward hepatocellular carcinoma cell lines was higher than that of cabozantinib. In the xenograft chick tumor model, compound 4 inhibited Hep3B tumor growth to a much greater extent than cabozantinib. The present study suggests that compound 4 may be a good therapeutic candidate against hepatocellular carcinoma.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11908
Author(s):  
Hong Gao ◽  
Peipei Tang ◽  
Kejie Ni ◽  
Lun Zhu ◽  
Song Chen ◽  
...  

Background Lung cancer is a common malignant carcinoma of respiratory system with high morbidity and mortality. Kelch-like epichlorohydrin-related protein 1 (Keap1), a member of the BTB-Kelch protein family, has been reported as an important molecule in several cancers. However, its potential role in tumor is still controversial. Here we aim to clarify the effect of Keap1 on the biological characteristics and chemotherapy resistance in lung adenocarcinoma (LUAD). Methods Immunohistochemistry was conducted to compare Keap1 expression in lung adenocarcinoma tissues and matched non-cancerous tissues, and the correlation between Keap1 expression and clinicopathological features was analyzed. Subsequently, the stable A549 and H1299 cell lines with Keap1 knockdown or overexpression were constructed using lentivirus. The roles of Keap1 on the cell proliferation, migration, invasion and drug resistance were investigated by colony formation assay, cell proliferation assay, wound scratch test, transwell invasion assay and drug sensitivity assay, respectively. Results Keap1 was lowly expressed in tumor tissues compared to matched non-cancerous tissues, and its expression was correlated with TNM stage and lymph node metastasis. Early stage (I) tumors without lymph node metastasis had higher levels of Keap1 expression compared with late-stage tumors (II, III) with the presence of lymphatic metastasis. Colony formation assays showed that Keap1 knockdown promoted the proliferation of A549 and H1299 cells, and the cell growth curves further confirmed this feature. In contrast, wound scratch and transwell invasion experiments showed that Keap1 overexpression inhibited cell migration and invasive malignancy. The IC50 for cisplatin and paclitaxel were significantly increased by Keap1 knockdown in A549 and H1299 cell lines. Conclusion Keap1 knockdown promotes tumor cell growth, proliferation, invasion, metastasis and chemotherapy resistance in LUAD. It may be a potential tumor marker to guide the staging and treatment of lung cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Liu ◽  
Wenguang Luo ◽  
Peijie Zhou ◽  
Yong Cheng ◽  
Liting Qian

Long non-coding RNAs (lncRNAs), as competitive endogenous RNAs (ceRNAs), play a critical role in biological processes of cancer. However, the roles of specific lncRNAs in ceRNA network of lung adenocarcinoma (LUAD) remains largely unclear. Herein, we identified the roles of lncRNA ADAMTS9-AS1/AS2 (ADAMTS-AS1/AS2) in lung adenocarcinoma by bioinformatics analyses and functional verification. First, differentially expressed genes ADAMTS9-AS1, ADAMTS9-AS2 and ADAMTS9 were screened out from GSE130779. Then the expression correlation of these three genes was analyzed. The results showed that ADAMTS9-AS1, ADAMTS9-AS2 and ADAMTS9 were down-regulated in LUAD, and were positively correlated with each other. After that, miRcode was used to find miR-150 which binds to ADAMTS9-AS1/ADAMTS9-AS2/ADAMTS9. Next, co-expression analysis and functional enrichment analyses were performed to further analyze differentially expressed genes. The results showed that the differentially expressed genes were mainly enriched in Beta3 integrin cell surface interactions and epithelial-to-mesenchymal transition. Finally, the cell functions of ADAMTS9-AS1 and ADAMTS9-AS2 in A549 and NCI-H1299 cell lines were verified. In vitro cell studies confirmed that ADAMTS9-AS1 and ADAMTS9-AS2 play an inhibitory role in LUAD cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7059
Author(s):  
Sadaf Dorandish ◽  
Sarah Atali ◽  
Ravel Ray ◽  
Hind Al Khashali ◽  
Kai-Ling Coleman ◽  
...  

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and shown to promote tumorigenesis. The purpose of this study was to explore the relative abundance of pro-brain-derived neurotrophic factor (proBDNF) and mature BDNF (mBDNF) in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher levels of proBDNF were detected in the media of A549 cells than in H1299 cell media. Using inhibitors, we found that the levels of proBDNF and mBDNF in the media are likely regulated by PI3K, AKT, and NFκB. However, the largest change in these levels resulted from MMP2/9 inhibition. Blocking p53 function in A549 cells resulted in increased mBDNF and decreased proBDNF, suggesting a role for p53 in regulating these levels. The ratio of proBDNF/mBDNF was not affected by MMP2 knockdown but increased in the media of both cell lines upon knockdown of MMP9. Downregulation of either MMP2 or MMP9 by siRNA showed that MMP9 siRNA treatment of either A549 or H1299 cells resulted in decreased cell viability and increased apoptosis, an effect diminished upon the same treatment with proBDNF immunodepleted media, suggesting that MMP9 regulates the cytotoxic effects induced by proBDNF in lung cancer cells.


2021 ◽  
Vol 22 (9) ◽  
pp. 4783
Author(s):  
Vineela Parvathaneni ◽  
Rasha S. Elbatanony ◽  
Mimansa Goyal ◽  
Tejashri Chavan ◽  
Nathan Vega ◽  
...  

There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-β-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-β-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.


2021 ◽  
Author(s):  
Xiaoling Xie ◽  
Yang Li ◽  
Zhiwu Liu ◽  
Yan Tang

Abstract Background: Radiotherapy is a main method for the treatment of malignant tumors. However, radiation resistance of tumor cells is the main reason for poor prognosis. The purpose of this study was to screen the differentially expressed protein (DEP), and its key protein related to radiation resistance in photon-resistant lung adenocarcinoma cell line H1299. Methods: In this study, we investigated the cell viability and colony formation were examined to evaluate the potent proliferation-inhibiting effect of photo therapy on the H1299 cells. Flow cytometry was used to detect apoptosis. Further we selected the appropriate irradiation dose after photon irradiation of radioresistant cell H1299 for screening and validation of radioresistance-related DEPs by proteomic analysis. Furthermore, we also studied the SLC2A1 and irradiation sensitivity potential. Results: The results showed a dose‑dependent decrease of viable cell percentage following high dose of exposure (at dose of 8 and 10 Gy), and a prolonged the prolongation of H1299 cell cycle arrest, induced apoptosis. Proteomic analysis using iTRAQ revealed a total of 46 DEPs were identified including 30 up-regulated and 16 down-regulated DEPs in inhibition. Western blotting validated the respective changes in protein expression. DEPs were significantly associated with five-year survival in patients with lung adenocarcinoma. In addition, after knocking down SLC2A1, it was found that 4Gy radiation could significantly inhibit the proliferation of H1299 cells and regulate G2 phase arrest of cell cycle by down-regulating Cdk2. Conclusions: These findings suggest the ITGA6,EIF4G1 and SLC2A1 protein is closely related to radiation resistance of lung adenocarcinoma, and SLC2A1 expression is significantly related to patient survival, so it can increase the sensitivity of H1299 cells to photon rays.


Micron ◽  
2021 ◽  
Vol 143 ◽  
pp. 103001
Author(s):  
Shuwei Wang ◽  
Tuoyu Ju ◽  
Jiajia Wang ◽  
Fan Yang ◽  
Kaige Qu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document