scholarly journals Cell Division Cycle 7 Mediates Transforming Growth Factor-β-induced Smooth Muscle Maturation through Activation of Myocardin Gene Transcription

2013 ◽  
Vol 288 (48) ◽  
pp. 34336-34342 ◽  
Author(s):  
Ning Shi ◽  
Shi-You Chen
1998 ◽  
Vol 274 (2) ◽  
pp. F252-F258 ◽  
Author(s):  
Jun Lei ◽  
Sharon Silbiger ◽  
Fuad N. Ziyadeh ◽  
Joel Neugarten

We examined the hypothesis that fetal calf serum (FCS) stimulates murine mesangial cell α1 type IV collagen ( COL4A1) gene transcription by increasing autocrine production of transforming growth factor-β (TGF-β) through a platelet-derived growth factor (PDGF)-dependent mechanism. PDGF-stimulated COL4A1 gene transcription was inhibited by neutralizing antibody to TGF-β (119.3 ± 3.6 vs. 106.0 ± 6.2 relative luciferase units, expressed as a percentage of control untreated cells, P < 0.003). FCS-stimulated gene transcription was inhibited by neutralizing antibody to PDGF (148.3 ± 4.1 vs. 136.7 ± 0.3 relative luciferase units, P < 0.002) and by neutralizing antibody to TGF-β (148.3 ± 4.1 vs. 127.1 ± 3.4 relative luciferase units, P < 0.036). The inhibitory effect of combined treatment with anti-PDGF and anti-TGF-β antibody on gene transcription was no greater than that of anti-TGF-β antibody alone [129.5 ± 0.53 vs. 127.1 ± 3.4 relative luciferase units, P = not significant (NS)]. FCS-stimulated gene transcription was also inhibited by estradiol (10−7 M) (148.4 ± 3.1 vs. 119.4 ± 8.1 relative luciferase units, P < 0.019). In the presence of estradiol, anti-TGF-β antibody failed to further reduce serum-stimulated gene transcription (119.4 ± 8.1 vs. 115.6 ± 9.8, P = NS), suggesting that estradiol reverses FCS-stimulated COL4A1 gene transcription by antagonizing the actions of TGF-β. Measurement of type IV collagen synthesis by Western blotting confirmed that the intact gene responded in a manner analogous to the promoter construct.


2019 ◽  
Vol 116 (1) ◽  
pp. 237-249 ◽  
Author(s):  
Hayato Ogawa ◽  
Koji Ohashi ◽  
Masanori Ito ◽  
Rei Shibata ◽  
Noriyoshi Kanemura ◽  
...  

AbstractAimsSecreted factors produced by adipose tissue are involved in the pathogenesis of cardiovascular disease. We previously identified adipolin, also known as C1q/TNF-related protein 12, as an insulin-sensitizing adipokine. However, the role of adipolin in vascular disease remains unknown. Here, we investigated whether adipolin modulates pathological vascular remodelling.Methods and resultsAdipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to wire-induced injury of the femoral artery. APL-KO mice showed increased neointimal thickening after vascular injury compared with WT mice, which was accompanied by an enhanced inflammatory response and vascular cell proliferation in injured arteries. Adipolin deficiency also led to a reduction in transforming growth factor-β (TGF-β) 1 protein levels in injured arteries. Treatment of cultured macrophages with adipolin protein led to a reduction in lipopolysaccharide-stimulated expression of inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin (IL) 6, and monocyte chemotactic protein (MCP)-1. These effects were reversed by inhibition of TGF-β receptor II (TGF-βRII)/Smad2 signalling. Adipolin also reduced platelet-derived growth factor (PDGF)-BB-stimulated proliferation of vascular smooth muscle cells (VSMCs) through a TGF-βRII/Smad2-dependent pathway. Furthermore, adipolin treatment significantly increased TGF-β1 concentration in media from cultured VSMCs and macrophages.ConclusionThese data indicate that adipolin protects against the development of pathological vascular remodelling by attenuating macrophage inflammatory responses and VSMC proliferation.


Sign in / Sign up

Export Citation Format

Share Document