scholarly journals Interferon γ-inducible Protein (IFI) 16 Transcriptionally Regulates Type I Interferons and Other Interferon-stimulated Genes and Controls the Interferon Response to both DNA and RNA Viruses

2014 ◽  
Vol 289 (34) ◽  
pp. 23568-23581 ◽  
Author(s):  
Mikayla R. Thompson ◽  
Shruti Sharma ◽  
Maninjay Atianand ◽  
Søren B. Jensen ◽  
Susan Carpenter ◽  
...  
2017 ◽  
Author(s):  
Melissa M. Linehan ◽  
Thayne H. Dickey ◽  
Emanuela S. Molinari ◽  
Megan E. Fitzgerald ◽  
Olga Potapova ◽  
...  

AbstractWe have developed highly potent synthetic activators of the vertebrate immune system that specifically target the RIG-I receptor. When introduced into mice, a family of short, triphosphorylated Stem Loop RNAs (SLRs) induces a potent interferon response and the activation of specific genes essential for antiviral defense. Using RNAseq, we provide the first in-vivo genome-wide view of the expression networks that are initiated upon RIG-I activation. We observe that SLRs specifically induce type I interferons, subsets of interferon-stimulated genes (ISGs), and cellular remodeling factors. By contrast, poly(I:C), which binds and activates multiple RNA sensors, induces type III interferons and several unique ISGs. The short length (10-14 base pairs) and robust function of SLRs in mice demonstrate that RIG-I forms active signaling complexes without oligomerizing on RNA. These findings demonstrate that SLRs are potent therapeutic and investigative tools for targeted modulation of the innate immune system.


2008 ◽  
Vol 31 (4) ◽  
pp. 13
Author(s):  
Martin Hyrcza ◽  
Mario Ostrowski ◽  
Sandy Der

Plasmacytoid dendritic cells (pDCs) are innate immune cells able to produce large quantities of type I interferons (IFN) when activated. Human immunodeficiency virus (HIV)-infected patients show generalized immune dysfunction characterized in part by chronic interferon response. In this study we investigated the role of dendritic cells inactivating and maintaining this response. Specifically we compared the IFN geneactivity in pDCs in response to several viruses and TLR agonists. We hypothesized that 1) the pattern of IFN gene transcription would differ in pDCs treated with HIV than with other agents, and 2) that pDCs from patients from different stages of disease would respond differently to the stimulations. To test these hypotheses, we obtained pDCs from 15 HIV-infected and uninfected individuals and treated freshly isolated pDCs with either HIV (BAL strain), influenza virus (A/PR/8/34), Sendai virus (Cantell strain), TLR7 agonist(imiquimod), or TLR9 agonist (CpG-ODN) for 6h. Type I IFN gene transcription was monitored by real time qPCRfor IFNA1, A2, A5, A6, A8,A17, B1, and E1, and cytokine levels were assayed by Cytometric Bead Arrays forTNF?, IL6, IL8, IL10, IL1?, and IL12p70. pDC function as determined by these two assays showed no difference between HIV-infected and uninfected patients or between patients with early or chronic infection. Specifically, HIV did notinduce type I IFN gene expression, whereas influenza virus, Sendai virus and imiquimod did. Similarly, HIV failed to induce any cytokine release from pDCs in contrast to influenza virus, Sendai virus and imiquimod, which stimulatedrelease of TNF?, IL6, or IL8. Together these results suggest that the reaction of pDCs to HIV virus is quantitatively different from the response to agents such as virus, Sendai virus, and imiquimod. In addition, pDCs from HIV-infected persons have responses similar to pDCs from uninfected donors, suggesting, that the DC function may not be affected by HIV infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elena N. Judd ◽  
Alison R. Gilchrist ◽  
Nicholas R. Meyerson ◽  
Sara L. Sawyer

Abstract Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one. Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 542.2-542
Author(s):  
A. Avdeeva ◽  
E. Tchetina ◽  
G. Markova ◽  
E. Nasonov

Background:Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including rheumatoid arthritis. IFN activity is usually quantified using expression of interferon-stimulated genes (ISGs) referred to as an IFN signature. Acellbia (BIOCAD) is the first Russian rituximab (RTX) biosimilar which was approved for medical use in rheumatoid arthritis (RA) patients in Russia and some CIS countries.Objectives:To evaluate the changes in expression of ISGs in patients (pts) with RA during RTX biosimilar therapyMethods:20 RA pts (18 woman, Me;IQR age 61.5(54-66.5) years, disease duration 39.5(20-84) months, mean DAS 28 5.6(4.9-6.8)) received two intravenous RTX biosimilar infusions (600 mg №2) in combination with DMARDs and glucocorticoids. Laboratory biomarkers were assessed at baseline and 24 weeks after the first infusion of RTX. 5 genes (IFI44L, MX1, IFIT 1, RSAD2, EPSTI1) were selected for evaluation of the “interferon signature” (Type I IFN gene signature – IFNGS). IFI44L and IFIT1 expression was undetectable, therefore the remaining three genes (MSX1, EPSTI1, RSAD2) were included into further analysis. IFNGS was calculated as the average expression values of the three selected genes. The control group included 20 age and gender matching healthy donors.Results:The baseline expression levels of MX1-11.48 (5.45-19.38), EPSTI1-12.83 (5.62-19.64), RSAD2-5.16 (2.73-10.4), and IFNGS-10.3 (5.18-17.12) in RA patients were significantly higher compared to healthy donors– 1,26 (0,73-1,6); 1,06 (0,81-1,48); 0,93 (0,72-1,19); 1,09 (0,92-1,42), (p<0.05, respectively). IFNGS was detected in 15 (75%) patients, and was not found in 5 (15%) patients. RTX induced reduction in disease activity, and the level of acute phase reactants (ESR, CRP) after 12 and 24 weeks of therapy, p<0.05 (fig.1). Increased RSAD 2 expression (p<0.05) and a trend to increasing IFNGS levels (p=0.06) were documented in the whole group, and also in patients with moderate treatment effects by week 24. Among patients with a good EULAR response to therapy, changes in expression were not significant (p> 0.05) (fig.1)Figure 1.Conclusion:Expression of IFN-stimulated genes was increased in RA patients compared to healthy donors. Increased RSAD2 and IFNGS expression was documented in patients with moderate effect of RTX therapy, therefore, these findings have important clinical relevance as predictors of RA clinical course which necessitates personified approach to treatment.Disclosure of Interests:None declared


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1864
Author(s):  
Isabel Pagani ◽  
Guido Poli ◽  
Elisa Vicenzi

Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.


2021 ◽  
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Epigenetic regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial–like cell line Xela DS2 in response to poly(I:C) – an analogue of double-stranded viral RNA and inducer of type I interferons – or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. We sequenced small RNA libraries generated from untreated, poly(I:C)–treated, and FV3–infected cells. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty–five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS–STING, RIG–I/MDA–5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF–κB–induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs, and sheds light on microRNA–mediated mechanisms of immunoevasion by FV3.


2021 ◽  
Author(s):  
Krystal J Vail ◽  
Bibiana Petri da Silveira ◽  
Samantha L Bell ◽  
Angela I Bordin ◽  
Noah D Cohen ◽  
...  

Rhodococcus equi is a major cause of foal pneumonia and an opportunistic pathogen in immunocompromised humans. While alveolar macrophages constitute the primary replicative niche for R. equi, little is known about how intracellular R. equi is sensed by macrophages. Here, we discovered that that in addition to previously characterized pro-inflammatory cytokines (e.g., Tnfa, Il6, Il1b), macrophages infected with R. equi induce a robust type I IFN response, including Ifnb and interferon-stimulated genes (ISGs), similar to the evolutionarily related pathogen, Mycobacterium tuberculosis. Follow up studies using a combination of mammalian and bacterial genetics, demonstrated that induction of this type I IFN expression program is largely dependent on the cGAS/STING/TBK1 axis of the cytosolic DNA surveillance pathway, suggesting that R. equi perturbs the phagosomal membrane and causes DNA release into the cytosol following phagocytosis. Consistent with this we found that a population of ~12% of R. equi phagosomes recruited the galectin-3, -8 and -9 danger receptors. Interesting, neither phagosomal damage nor induction of type I IFN required the R. equi's virulence-associated plasmid. Importantly, R. equi infection of both mice and foals stimulated ISG expression, in organs (mice) and circulating monocytes (foals). By demonstrating that R. equi activates cytosolic DNA sensing in macrophages and elicits type I IFN responses in animal models, our work provides novel insights into how R. equi engages the innate immune system and furthers our understanding how this zoonotic pathogen causes inflammation and disease.


2009 ◽  
Vol 206 (9) ◽  
pp. 1899-1911 ◽  
Author(s):  
Sarah M. McWhirter ◽  
Roman Barbalat ◽  
Kathryn M. Monroe ◽  
Mary F. Fontana ◽  
Mamoru Hyodo ◽  
...  

The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di–guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells. In vivo and in vitro studies have previously suggested that c-di-GMP is a potent immunostimulatory compound recognized by mouse and human cells. We provide evidence that c-di-GMP is sensed in the cytosol of mammalian cells via a novel immunosurveillance pathway. The potency of cytosolic signaling induced by c-di-GMP is comparable to that induced by cytosolic delivery of DNA, and both nucleic acids induce a similar transcriptional profile, including triggering of type I interferons and coregulated genes via induction of TBK1, IRF3, nuclear factor κB, and MAP kinases. However, the cytosolic pathway that senses c-di-GMP appears to be distinct from all known nucleic acid–sensing pathways. Our results suggest a novel mechanism by which host cells can induce an inflammatory response to a widely produced bacterial ligand.


Sign in / Sign up

Export Citation Format

Share Document