scholarly journals IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1)

2015 ◽  
Vol 290 (50) ◽  
pp. 30163-30174 ◽  
Author(s):  
Zhihong Chen ◽  
Lingkai Su ◽  
Qingan Xu ◽  
Jenny Katz ◽  
Suzanne M. Michalek ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3940-3947 ◽  
Author(s):  
Lan V. Pham ◽  
Archito T. Tamayo ◽  
Linda C. Yoshimura ◽  
Yen-Chiu Lin-Lee ◽  
Richard J. Ford

Abnormalities in B-lymphocyte CD40 ligand (CD154) expression have been described for a number of immunologic diseases, including B-cell lymphomas. Although functional analysis of the CD154 gene and protein has been extensive, little is known about the mechanisms controlling CD154 expression in activated T cells, and even less is known for normal and malignant B cells. In this study we describe the transcriptional mechanism controlling CD154 expression in large B-cell lymphoma (LBCL). We show that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL. We demonstrate that the constitutively active NFATc1 and c-rel members of the NFAT and nuclear factor–κB (NF-κB) families of transcription factors, respectively, directly interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 or c-rel with small interfering RNA (siRNA) or chemical inhibitors inhibits CD154 gene transcription and lymphoma cell growth. These findings suggest that targeting NF-κB and NFAT, by inhibiting the expression of these transcription factors, or interdicting their interaction may provide a therapeutic rationale for patients with non-Hodgkin lymphoma of B-cell origin, and possibly other disorders that display dysregulated CD154 expression.


2000 ◽  
Vol 20 (2) ◽  
pp. 702-712 ◽  
Author(s):  
Chi-Wing Chow ◽  
Roger J. Davis

ABSTRACT Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.


Author(s):  
Meredith J. Giblin ◽  
Taylor E. Smith ◽  
Garrett Winkler ◽  
Hannah A. Pendergrass ◽  
Minjae J. Kim ◽  
...  

2006 ◽  
Vol 103 (10) ◽  
pp. 3740-3745 ◽  
Author(s):  
T. So ◽  
J. Song ◽  
K. Sugie ◽  
A. Altman ◽  
M. Croft

Sign in / Sign up

Export Citation Format

Share Document