scholarly journals Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity

2017 ◽  
Vol 292 (24) ◽  
pp. 10197-10219 ◽  
Author(s):  
Ujjwal Rathore ◽  
Piyali Saha ◽  
Sannula Kesavardhana ◽  
Aditya Arun Kumar ◽  
Rohini Datta ◽  
...  
Virology ◽  
1997 ◽  
Vol 234 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Michael D. Miller ◽  
Maria T. Warmerdam ◽  
Sharon S. Ferrell ◽  
Robert Benitez ◽  
Warner C. Greene
Keyword(s):  

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Iris Cadima-Couto ◽  
Joao Goncalves

APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G (A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners between both proteins as one of the major challenges for the development of new antiviral drugs.


1996 ◽  
Vol 229 (1) ◽  
pp. 299-304 ◽  
Author(s):  
M.Tiziana Corasaniti ◽  
Michele Navarra ◽  
M.Valeria Catani ◽  
Gerry Melino ◽  
giuseppe Nisticò ◽  
...  

2000 ◽  
Vol 74 (23) ◽  
pp. 11055-11066 ◽  
Author(s):  
Åsa Öhagen ◽  
Dana Gabuzda

ABSTRACT The Vif protein of human immunodeficiency virus type 1 (HIV-1) is important for virion infectivity. Previous studies have shown thatvif-defective virions exhibit structural abnormalities in the virus core and are defective in the ability to complete proviral DNA synthesis in acutely infected cells. We developed novel assays to assess the relative stability of the core in HIV-1 virions. Using these assays, we examined the role of Vif in the stability of the HIV-1 core. The integrity of the core was examined following virion permeabilization or removal of the lipid envelope and treatment with various triggers, including S100 cytosol, deoxynucleoside triphosphates, detergents, NaCl, and buffers of different pH to mimic aspects of the uncoating and disassembly process which occurs after virus entry but preceding or during reverse transcription.vif mutant cores were more sensitive to disruption by all triggers tested than wild-type cores, as determined by endogenous reverse transcriptase (RT) assays, biochemical analyses, and electron microscopy. RT and the p7 nucleocapsid protein were released more readily from vif mutant virions than from wild-type virions, suggesting that the internal nucleocapsid is less stably packaged in the absence of Vif. Purified cores could be isolated from wild-type but not vif mutant virions by sedimentation through detergent-treated gradients. These results demonstrate that Vif increases the stability of virion cores. This may permit efficient viral DNA synthesis by preventing premature degradation or disassembly of viral nucleoprotein complexes during early events after virus entry.


2001 ◽  
Vol 312 (2) ◽  
pp. 67-70 ◽  
Author(s):  
M.T Corasaniti ◽  
S Piccirilli ◽  
A Paoletti ◽  
R Nisticò ◽  
A Stringaro ◽  
...  

2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Sanela Rankovic ◽  
Ruben Ramalho ◽  
Christopher Aiken ◽  
Itay Rousso

ABSTRACTThe RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed in a cone-shaped capsid shell that disassembles following cell entry via a process known as uncoating. During HIV-1 infection, the capsid is important for reverse transcription and entry of the virus into the target cell nucleus. The small molecule PF74 inhibits HIV-1 infection at early stages by binding to the capsid and perturbing uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. Here, we show, using atomic force microscopy (AFM), that binding of PF74 to recombinant capsid-like assemblies and to HIV-1 isolated cores stabilizes the capsid in a concentration-dependent manner. At a PF74 concentration of 10 μM, the mechanical stability of the core is increased to a level similar to that of the intrinsically hyperstable capsid mutant E45A. PF74 also prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores treated with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, and a cap-like structure dissociated from the narrow end of the core. Moreover, the internal coiled structure that was observed to form during reverse transcriptionin vitropersisted throughout the duration of the measurement (∼24 h). Our results provide direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice, thereby permitting reverse transcription while interfering with a late step in uncoating.IMPORTANCEThe capsid-binding small molecule PF74 inhibits HIV-1 infection at early stages and perturbs uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. We recently introduced time-lapse atomic force microscopy to study the morphology and physical properties of HIV-1 cores during the course of reverse transcription. Here, we apply this AFM methodology to show that PF74 prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, but a cap-like structure dissociated from the narrow end of the core HIV-1. Our result provides direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice.


Life Sciences ◽  
1997 ◽  
Vol 61 (9) ◽  
pp. PL119-PL125 ◽  
Author(s):  
William A. Banks ◽  
Abba J. Kastin ◽  
Victoria Akerstrom

2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Harada ◽  
Nobutoki Takamune ◽  
Shozo Shoji ◽  
Shogo Misumi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document