scholarly journals In VitroEvidence That the Untranslated Leader of the HIV-1 Genome Is an RNA Checkpoint That Regulates Multiple Functions through Conformational Changes

2002 ◽  
Vol 277 (22) ◽  
pp. 19967-19975 ◽  
Author(s):  
Ben Berkhout ◽  
Marcel Ooms ◽  
Nancy Beerens ◽  
Hendrik Huthoff ◽  
Edwin Southern ◽  
...  
2018 ◽  
Author(s):  
Marine Kanja ◽  
Pierre Cappy ◽  
Guillermo Blanco-Rodriguez ◽  
Nicolas Levy ◽  
Oyndamola Oladosu ◽  
...  
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Ashley Lauren Bennett ◽  
Rory Henderson

The HIV-1 envelope glycoprotein (Env) mediates host cell fusion and is the primary target for HIV-1 vaccine design. The Env undergoes a series of functionally important conformational rearrangements upon engagement of its host cell receptor, CD4. As the sole target for broadly neutralizing antibodies, our understanding of these transitions plays a critical role in vaccine immunogen design. Here, we review available experimental data interrogating the HIV-1 Env conformation and detail computational efforts aimed at delineating the series of conformational changes connecting these rearrangements. These studies have provided a structural mapping of prefusion closed, open, and transition intermediate structures, the allosteric elements controlling rearrangements, and state-to-state transition dynamics. The combination of these investigations and innovations in molecular modeling set the stage for advanced studies examining rearrangements at greater spatial and temporal resolution.


1996 ◽  
Vol 39 (8) ◽  
pp. 1589-1600 ◽  
Author(s):  
Andrew L. Hopkins ◽  
Jingshan Ren ◽  
Robert M. Esnouf ◽  
Benjamin E. Willcox ◽  
E. Yvonne Jones ◽  
...  

2017 ◽  
Vol 61 (8) ◽  
Author(s):  
David Wensel ◽  
Yongnian Sun ◽  
Zhufang Li ◽  
Sharon Zhang ◽  
Caryn Picarillo ◽  
...  

ABSTRACT A novel fibronectin-based protein (Adnectin) HIV-1 inhibitor was generated using in vitro selection. This inhibitor binds to human CD4 with a high affinity (3.9 nM) and inhibits viral entry at a step after CD4 engagement and preceding membrane fusion. The progenitor sequence of this novel inhibitor was selected from a library of trillions of Adnectin variants using mRNA display and then further optimized for improved antiviral and physical properties. The final optimized inhibitor exhibited full potency against a panel of 124 envelope (gp160) proteins spanning 11 subtypes, indicating broad-spectrum activity. Resistance profiling studies showed that this inhibitor required 30 passages (151 days) in culture to acquire sufficient resistance to result in viral titer breakthrough. Resistance mapped to the loss of multiple potential N-linked glycosylation sites in gp120, suggesting that inhibition is due to steric hindrance of CD4-binding-induced conformational changes.


2008 ◽  
Vol 412 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Alon Herschhorn ◽  
Iris Oz-Gleenberg ◽  
Amnon Hizi

The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.


2002 ◽  
Vol 76 (19) ◽  
pp. 10015-10019 ◽  
Author(s):  
P. P. Chamberlain ◽  
J. Ren ◽  
C. E. Nichols ◽  
L. Douglas ◽  
J. Lennerstrand ◽  
...  

ABSTRACT Six structures of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing combinations of resistance mutations for zidovudine (AZT) (M41L and T215Y) or lamivudine (M184V) have been determined as inhibitor complexes. Minimal conformational changes in the polymerase or nonnucleoside RT inhibitor sites compared to the mutant RTMC (D67N, K70R, T215F, and K219N) are observed, indicating that such changes may occur only with certain combinations of mutations. Model building M41L and T215Y into HIV-1 RT-DNA and docking in ATP that is utilized in the pyrophosphorolysis reaction for AZT resistance indicates that some conformational rearrangement appears necessary in RT for ATP to interact simultaneously with the M41L and T215Y mutations.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jeremiah D. Heredia ◽  
Jihye Park ◽  
Hannah Choi ◽  
Kevin S. Gill ◽  
Erik Procko

ABSTRACTHIV-1 infection is initiated by viral Env engaging the host receptor CD4, triggering Env to transition from a “closed” to “open” conformation during the early events of virus-cell membrane fusion. To understand how Env sequence accommodates this conformational change, mutational landscapes decoupled from virus replication were determined for Env from BaL (clade B) and DU422 (clade C) isolates interacting with CD4 or antibody PG16 that preferentially recognizes closed trimers. Sequence features uniquely important to each bound state were identified, including glycosylation and binding sites. Notably, the Env apical domain and trimerization interface are under selective pressure for PG16 binding. Based on this key observation, mutations were found that increase presentation of quaternary epitopes associated with properly conformed trimers when Env is expressed at the plasma membrane. Many mutations reduce electrostatic repulsion at the Env apex and increase PG16 recognition of Env sequences from clades A and B. Other mutations increase hydrophobic packing at the gp120 inner-outer domain interface and were broadly applicable for engineering Env from diverse strains spanning tiers 1, 2, and 3 across clades A, B, C, and BC recombinants. Core mutations predicted to introduce steric strain in the open state show markedly reduced CD4 interactions. Finally, we demonstrate how our methodology can be adapted to interrogate interactions between membrane-associated Env and the matrix domain of Gag. These findings and methods may assist vaccine design.IMPORTANCEHIV-1 Env is dynamic and undergoes large conformational changes that drive fusion of virus and host cell membranes. Three Env proteins in a trimer contact each other at their apical tips to form a closed conformation that presents epitopes recognized by broadly neutralizing antibodies. The apical tips separate, among other changes, to form an open conformation that binds tightly to host receptors. Understanding how Env sequence facilitates these structural changes can inform the biophysical mechanism and aid immunogen design. Using deep mutational scans decoupled from virus replication, we report mutational landscapes for Env from two strains interacting with conformation-dependent binding proteins. Residues in the Env trimer interface and apical domains are preferentially conserved in the closed conformation, and conformational diversity is facilitated by electrostatic repulsion and an underpacked core between domains. Specific mutations are described that enhance presentation of the trimeric closed conformation across diverse HIV-1 strains.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2100 ◽  
Author(s):  
David A. Jans ◽  
Kylie M. Wagstaff

The small molecule macrocyclic lactone ivermectin, approved by the US Food and Drug Administration for parasitic infections, has received renewed attention in the last eight years due to its apparent exciting potential as an antiviral. It was identified in a high-throughput chemical screen as inhibiting recognition of the nuclear localizing Human Immunodeficiency Virus-1 (HIV-1) integrase protein by the host heterodimeric importin (IMP) α/β1 complex, and has since been shown to bind directly to IMPα to induce conformational changes that prevent its normal function in mediating nuclear import of key viral and host proteins. Excitingly, cell culture experiments show robust antiviral action towards HIV-1, dengue virus (DENV), Zika virus, West Nile virus, Venezuelan equine encephalitis virus, Chikungunya virus, Pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19). Phase III human clinical trials have been completed for DENV, with >50 trials currently in progress worldwide for SARS-CoV-2. This mini-review discusses the case for ivermectin as a host-directed broad-spectrum antiviral agent for a range of viruses, including SARS-CoV-2.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1210
Author(s):  
Christophe Caillat ◽  
Delphine Guilligay ◽  
Guidenn Sulbaran ◽  
Winfried Weissenhorn

HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.


Sign in / Sign up

Export Citation Format

Share Document