Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases

2008 ◽  
Vol 412 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Alon Herschhorn ◽  
Iris Oz-Gleenberg ◽  
Amnon Hizi

The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.

2015 ◽  
Vol 89 (10) ◽  
pp. 5204-5212 ◽  
Author(s):  
Ailie Marx ◽  
Akram Alian

Pathogens such as HIV-1, with their minimalist genomes, must navigate cellular networks and rely on hijacking and manipulating the host machinery for successful replication. Limited overlap of host factors identified as vital for pathogen replication may be explained by considering that pathogens target, rather than specific cellular factors, crucial cellular pathways by targeting different, functionally equivalent, protein-protein interactions within that pathway. The ability to utilize alternative routes through cellular pathways may be essential for pathogen survival when restricted and provide flexibility depending on the viral replication stage and the environment in the infected host. In this minireview, we evaluate evidence supporting this notion, discuss specific HIV-1 examples, and consider the molecular mechanisms which allow pathogens to flexibly exploit different routes.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2019 ◽  
Vol 116 (47) ◽  
pp. 23527-23533 ◽  
Author(s):  
Mengyuan Xu ◽  
Janna Kiselar ◽  
Tawna L. Whited ◽  
Wilnelly Hernandez-Sanchez ◽  
Derek J. Taylor

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein–protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


2021 ◽  
Vol 72 (3) ◽  
pp. 30-36
Author(s):  
Tatjana Simić

Studies of the molecular mechanisms regarding interaction of different viruses with receptors on the host cell surface have shown that the viral entry depends on the specific relationship between free thiol (SH) groups and disulfides on the virus surface, as well as the thiol disulfide balance on the host cell surface. The presence of oxidizing compounds or alkylating agents, which disturb the thiol-disulfide balance on the surface of the virus, can also affect its infectious potential. Disturbed thiol-disulfide balance may also influence protein-protein interactions between SARS-CoV-2 protein S and ACE2 receptors of the host cell. This review presents the basic mechanisms of maintaining intracellular and extracellular thiol disulfide balance and previous experimental and clinical evidence in favor of impaired balance in SARS-CoV-2 infection. Besides, the results of the clinical application or experimental analysis of compounds that induce changes in the thiol disulfide balance towards reduction of disulfide bridges in proteins of interest in COVID-19 infection are presented.


2002 ◽  
Vol 76 (19) ◽  
pp. 10015-10019 ◽  
Author(s):  
P. P. Chamberlain ◽  
J. Ren ◽  
C. E. Nichols ◽  
L. Douglas ◽  
J. Lennerstrand ◽  
...  

ABSTRACT Six structures of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing combinations of resistance mutations for zidovudine (AZT) (M41L and T215Y) or lamivudine (M184V) have been determined as inhibitor complexes. Minimal conformational changes in the polymerase or nonnucleoside RT inhibitor sites compared to the mutant RTMC (D67N, K70R, T215F, and K219N) are observed, indicating that such changes may occur only with certain combinations of mutations. Model building M41L and T215Y into HIV-1 RT-DNA and docking in ATP that is utilized in the pyrophosphorolysis reaction for AZT resistance indicates that some conformational rearrangement appears necessary in RT for ATP to interact simultaneously with the M41L and T215Y mutations.


FEBS Journal ◽  
2012 ◽  
Vol 279 (16) ◽  
pp. 2795-2809 ◽  
Author(s):  
Michal Maes ◽  
Abraham Loyter ◽  
Assaf Friedler

2002 ◽  
Vol 2 ◽  
pp. 1569-1578 ◽  
Author(s):  
David J. Granville ◽  
Roberta A. Gottlieb

The past 5 years has seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Apoptosis can be initiated by a wide array of stimuli, inducing multiple signaling pathways that, for the most part, converge at the mitochondrion. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also “gatekeepers” that ultimately determine the fate of the cell. The mitochondrial decision as to whether a cell lives or dies is complex, involving protein-protein interactions, ionic changes, reactive oxygen species, and other mechanisms that require further elucidation. Once the death process is initiated, mitochondria undergo conformational changes, resulting in the release of cytochrome c (cyt c), caspases, endonucleases, and other factors leading to the onset and execution of apoptosis. The present review attempts to outline the complex milieu of events regulating the mitochondrial commitment to and processes involved in the implementation of the executioner phase of apoptotic cell death.


2018 ◽  
Vol 15 (4) ◽  
Author(s):  
Olga V. Saik ◽  
Pavel S. Demenkov ◽  
Timofey V. Ivanisenko ◽  
Elena Yu. Bragina ◽  
Maxim B. Freidin ◽  
...  

AbstractComorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes.


Sign in / Sign up

Export Citation Format

Share Document