scholarly journals Src Homology 3 Binding Sites in the P2Y2Nucleotide Receptor Interact with Src and Regulate Activities of Src, Proline-rich Tyrosine Kinase 2, and Growth Factor Receptors

2003 ◽  
Vol 279 (9) ◽  
pp. 8212-8218 ◽  
Author(s):  
Jun Liu ◽  
Zhongji Liao ◽  
Jean Camden ◽  
Korey D. Griffin ◽  
Richard C. Garrad ◽  
...  
2001 ◽  
Vol 152 (5) ◽  
pp. 971-984 ◽  
Author(s):  
Xiu-Rong Ren ◽  
Quan-Sheng Du ◽  
Yang-Zhong Huang ◽  
Shi-Zhou Ao ◽  
Lin Mei ◽  
...  

Proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase structurally related to focal adhesion kinase (FAK), is implicated in regulating cytoskeletal organization. However, mechanisms by which PYK2 participates in and regulates cytoskeletal organization remain largely unknown. Here we report identification of PSGAP, a novel protein that interacts with PYK2 and FAK and contains multiple domains including a pleckstrin homology domain, a rhoGTPase-activating protein domain, and a Src homology 3 domain. PYK2 interacts with PSGAP Src homology 3 domain via the carboxyl-terminal proline-rich sequence. PSGAP is able to increase GTPase activity of CDC42 and RhoA in vitro and in vivo. Remarkably, PYK2, but not FAK, can activate CDC42 via inhibition of PSGAP-mediated GTP hydrolysis of CDC42. Moreover, PSGAP is localized at cell periphery in fibroblasts in a pleckstrin homology domain–dependent manner. Over expression of PSGAP in fibroblasts results in reorganization of cytoskeletal structures and changes of cellular morphology, which requires rhoGTPase-activating activity. Taken together, our results suggest that PSGAP is a signaling protein essential for PYK2 regulation of cytoskeletal organization via Rho family GTPases.


2012 ◽  
Vol 445 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Qiong Lin ◽  
Jian Wang ◽  
Chandra Childress ◽  
Wannian Yang

ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10–Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.


PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0174909 ◽  
Author(s):  
Manuela O. Gustafsson ◽  
Dara K. Mohammad ◽  
Erkko Ylösmäki ◽  
Hyunseok Choi ◽  
Subhash Shrestha ◽  
...  

1994 ◽  
Vol 14 (1) ◽  
pp. 509-517
Author(s):  
W Li ◽  
R Nishimura ◽  
A Kashishian ◽  
A G Batzer ◽  
W J Kim ◽  
...  

Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.


Cytokine ◽  
2011 ◽  
Vol 56 (1) ◽  
pp. 60
Author(s):  
Canhui Guo ◽  
Anu Gupta ◽  
Sarmishtha De ◽  
Brian P. Rubin ◽  
George R. Stark

Sign in / Sign up

Export Citation Format

Share Document