scholarly journals Interleukin-10 Induces Uteroglobin-related Protein (UGRP) 1 Gene Expression in Lung Epithelial Cells through Homeodomain Transcription Factor T/EBP/NKX2.1

2004 ◽  
Vol 279 (52) ◽  
pp. 54358-54368 ◽  
Author(s):  
Achara Srisodsai ◽  
Reiko Kurotani ◽  
Yoshihiko Chiba ◽  
Faruk Sheikh ◽  
Howard A. Young ◽  
...  
2003 ◽  
Vol 71 (10) ◽  
pp. 6035-6044 ◽  
Author(s):  
B. McMorran ◽  
L. Town ◽  
E. Costelloe ◽  
J. Palmer ◽  
J. Engel ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P. aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific type III-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 h of infection and could be classified into four different expression patterns. These include (i) host genes that are induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specifically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early and transient activation of the AP1 transcription factor complex. In conclusion, the present study provides a detailed insight into the response of epithelial cells to infection and indicates the significant role played by the type III virulence mechanism in the initial host response.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


1997 ◽  
Vol 272 (32) ◽  
pp. 20191-20197 ◽  
Author(s):  
Prabir Ray ◽  
Liyan Yang ◽  
Dong-Hong Zhang ◽  
Samir K. Ghosh ◽  
Anuradha Ray

2021 ◽  
Author(s):  
Ramana Chilakamarti

Highly pathogenic respiratory viruses such as 1918 influenza (HIN1) and coronavirus (SARS-CoV-2) induce significant lung injury with diffuse alveolar damage, capillary leak, and extensive cell death resulting in acute respiratory distress syndrome (ARDS). Direct effects of the virus, as well as host immune response such as proinflammatory cytokine production, contribute to programmed cell death or apoptosis. Alveolar lung epithelial type II (AT2) cells play a major role in the clearance of respiratory viruses, secretion of surfactant proteins and antimicrobial substances into the bronchoalveolar fluid as well as repair of lung injury. Gene expression in AT2 cells is regulated in a tissue and cell-specific manner and in a temporal fashion. The availability of tissue and cell-specific RNA datasets in Human Protein Atlas led to the identification of localized expression patterns of BCL-2 family members such as BCL2 related protein A1 (BCL2A1) in AT2 cells and immune cells of the lung. BCL2A1 expression was regulated by multiple stimuli including Toll-like receptor (TLR) ligands, interferons (IFNs), inflammatory cytokines, and inhibited by the steroid dexamethasone. In this study, regulation of BCL2A1 gene expression in human lung epithelial cells by several respiratory viruses and type I interferon signaling was investigated. SARS-CoV-2 infection significantly induced BCL2A1 expression in human lung epithelial cells within 24 hours that required the expression of Angiotensin-converting enzyme 2 (ACE2). BCL2A1 mRNA induction by SARS-CoV-2 was correlated with the induced expression of IFN-β and IFN-regulated transcription factor mRNA. BCL2A1 was induced by IFN-β treatment or by infection with influenza virus lacking the non-structural protein1(NS1) in NHBE cells. Furthermore, bioinformatics revealed that a subset of BCL-2 family members involved in the control of apoptosis and transcription such as BCL2A1, BCL2L14, BCL3, and BCL6 were regulated in the lung epithelial cells by coronaviruses and in the lung tissue samples of COVID-19 patients. Transcriptomic data also suggested that these genes were differentially regulated by the steroid drug dexamethasone.


2019 ◽  
Vol 13 (9) ◽  
pp. 1227-1243 ◽  
Author(s):  
Carmen Schmitz ◽  
Jennifer Welck ◽  
Isabella Tavernaro ◽  
Marianna Grinberg ◽  
Jörg Rahnenführer ◽  
...  

2012 ◽  
Vol 86 (18) ◽  
pp. 10211-10217 ◽  
Author(s):  
Andrea Rückle ◽  
Emanuel Haasbach ◽  
Ilkka Julkunen ◽  
Oliver Planz ◽  
Christina Ehrhardt ◽  
...  

Influenza A virus (IAV) infection of epithelial cells activates NF-κB transcription factors via the canonical NF-κB signaling pathway, which modulates both the antiviral immune response and viral replication. Since almost nothing is known so far about a function of noncanonical NF-κB signaling after IAV infection, we tested infected cells for activation of p52 and RelB. We show that the viral NS1 protein strongly inhibits RIG-I-mediated noncanonical NF-κB activation and expression of the noncanonical target gene CCL19.


2003 ◽  
Vol 285 (3) ◽  
pp. L593-L601 ◽  
Author(s):  
Hong Hao ◽  
Christine H. Wendt ◽  
Gurpreet Sandhu ◽  
David H. Ingbar

Na+-K+-ATPase plays an essential role in active alveolar epithelial fluid resorption. In fetal and adult alveolar epithelial cells, glucocorticoids (GC) increase Na+-K+-ATPase activity and mRNA levels. We sought to define the mechanism of Na+-K+-ATPase gene upregulation by GC. In a rat alveolar epithelial cell line (RLE), dexamethasone (Dex) increased β1-subunit Na+-K+-ATPase mRNA expression two- to threefold within 3 h after exposure to the GC. The increased gene expression was due to increased transcription as demonstrated by nuclear run-on assays, whereas mRNA stability remained unchanged. Transient transfection of 5′ deletion mutants of a β1promoter-reporter construct demonstrated a 1.5- to 2.2-fold increase in promoter activity by Dex. All of the 5′ deletion constructs contained partial or palindromic GC regulatory elements (GRE) and responded to GC. The increased expression of promoter reporter was inhibited by RU-486, a GC receptor (GR) antagonist, suggesting the involvement of GR. The palindromic GRE at -631 demonstrated Dex induction in a heterologous promoter construct. Gel mobility shift assays using RLE nuclear extracts demonstrated specific binding to this site and the presence of GR. We conclude that GC directly stimulate transcription of Na+-K+-ATPase β1gene expression in adult rat lung epithelial cells through a GR-dependent mechanism that can act at multiple sites.


Sign in / Sign up

Export Citation Format

Share Document